These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 33810616)
1. Measurement of Physical Activity by Shoe-Based Accelerometers-Calibration and Free-Living Validation. Fridolfsson J; Arvidsson D; Grau S Sensors (Basel); 2021 Mar; 21(7):. PubMed ID: 33810616 [TBL] [Abstract][Full Text] [Related]
2. Comparison of Indirect Calorimetry- and Accelerometry-Based Energy Expenditure During Children's Discrete Skill Performance. Sacko R; McIver K; Brazendale K; Pfeifer C; Brian A; Nesbitt D; Stodden DF Res Q Exerc Sport; 2019 Dec; 90(4):629-640. PubMed ID: 31441713 [No Abstract] [Full Text] [Related]
3. Calibration of GENEActiv accelerometer wrist cut-points for the assessment of physical activity intensity of preschool aged children. Roscoe CMP; James RS; Duncan MJ Eur J Pediatr; 2017 Aug; 176(8):1093-1098. PubMed ID: 28674825 [TBL] [Abstract][Full Text] [Related]
4. A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers. Ellis K; Kerr J; Godbole S; Lanckriet G; Wing D; Marshall S Physiol Meas; 2014 Nov; 35(11):2191-203. PubMed ID: 25340969 [TBL] [Abstract][Full Text] [Related]
5. Accelerometry calibration in people with class II-III obesity: Energy expenditure prediction and physical activity intensity identification. Diniz-Sousa F; Veras L; Ribeiro JC; Boppre G; Devezas V; Santos-Sousa H; Preto J; Machado L; Vilas-Boas JP; Oliveira J; Fonseca H Gait Posture; 2020 Feb; 76():104-109. PubMed ID: 31756665 [TBL] [Abstract][Full Text] [Related]
6. Validation of Energy Expenditure Prediction Models Using Real-Time Shoe-Based Motion Detectors. Lin SY; Lai YC; Hsia CC; Su PF; Chang CH IEEE Trans Biomed Eng; 2017 Sep; 64(9):2152-2162. PubMed ID: 28113297 [TBL] [Abstract][Full Text] [Related]
7. Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data. Montoye AHK; Begum M; Henning Z; Pfeiffer KA Physiol Meas; 2017 Feb; 38(2):343-357. PubMed ID: 28107205 [TBL] [Abstract][Full Text] [Related]
8. Validation of Oura ring energy expenditure and steps in laboratory and free-living. Kristiansson E; Fridolfsson J; Arvidsson D; Holmäng A; Börjesson M; Andersson-Hall U BMC Med Res Methodol; 2023 Feb; 23(1):50. PubMed ID: 36829120 [TBL] [Abstract][Full Text] [Related]
9. Reexamination of Accelerometer Calibration with Energy Expenditure as Criterion: VO Arvidsson D; Fridolfsson J; Buck C; Ekblom Ö; Ekblom-Bak E; Lissner L; Hunsberger M; Börjesson M Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31374854 [TBL] [Abstract][Full Text] [Related]
10. Workplace activity classification from shoe-based movement sensors. Fridolfsson J; Arvidsson D; Doerks F; Kreidler TJ; Grau S BMC Biomed Eng; 2020; 2():8. PubMed ID: 32903356 [TBL] [Abstract][Full Text] [Related]
11. The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation in Older Adults: Validation Study. Davoudi A; Mardini MT; Nelson D; Albinali F; Ranka S; Rashidi P; Manini TM JMIR Mhealth Uhealth; 2021 May; 9(5):e23681. PubMed ID: 33938809 [TBL] [Abstract][Full Text] [Related]
12. Wrist-Worn Activity Trackers in Laboratory and Free-Living Settings for Patients With Chronic Pain: Criterion Validity Study. Sjöberg V; Westergren J; Monnier A; Lo Martire R; Hagströmer M; Äng BO; Vixner L JMIR Mhealth Uhealth; 2021 Jan; 9(1):e24806. PubMed ID: 33433391 [TBL] [Abstract][Full Text] [Related]
13. Energy Expenditure Prediction Using Raw Accelerometer Data in Simulated Free Living. Montoye AH; Mudd LM; Biswas S; Pfeiffer KA Med Sci Sports Exerc; 2015 Aug; 47(8):1735-46. PubMed ID: 25494392 [TBL] [Abstract][Full Text] [Related]
14. Predicting Chinese children and youth's energy expenditure using ActiGraph accelerometers: a calibration and cross-validation study. Zhu Z; Chen P; Zhuang J Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S56-63. PubMed ID: 24527567 [TBL] [Abstract][Full Text] [Related]
15. Calibration and Cross-Validation of Accelerometery for Estimating Movement Skills in Children Aged 8-12 Years. Duncan MJ; Dobell A; Noon M; Clark CCT; Roscoe CMP; Faghy MA; Stodden D; Sacko R; Eyre ELJ Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32414192 [TBL] [Abstract][Full Text] [Related]
16. Development of cut-points for determining activity intensity from a wrist-worn ActiGraph accelerometer in free-living adults. Montoye AHK; Clevenger KA; Pfeiffer KA; Nelson MB; Bock JM; Imboden MT; Kaminsky LA J Sports Sci; 2020 Nov; 38(22):2569-2578. PubMed ID: 32677510 [TBL] [Abstract][Full Text] [Related]
17. Accurate prediction of energy expenditure using a shoe-based activity monitor. Sazonova N; Browning RC; Sazonov E Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868 [TBL] [Abstract][Full Text] [Related]
18. Calibration of wrist-worn ActiWatch 2 and ActiGraph wGT3X for assessment of physical activity in young adults. Lee P; Tse CY Gait Posture; 2019 Feb; 68():141-149. PubMed ID: 30476691 [TBL] [Abstract][Full Text] [Related]
19. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Swartz AM; Strath SJ; Bassett DR; O'Brien WL; King GA; Ainsworth BE Med Sci Sports Exerc; 2000 Sep; 32(9 Suppl):S450-6. PubMed ID: 10993414 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System. Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]