These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33810616)

  • 21. Prior automatic posture and activity identification improves physical activity energy expenditure prediction from hip-worn triaxial accelerometry.
    Garnotel M; Bastian T; Romero-Ugalde HM; Maire A; Dugas J; Zahariev A; Doron M; Jallon P; Charpentier G; Franc S; Blanc S; Bonnet S; Simon C
    J Appl Physiol (1985); 2018 Mar; 124(3):780-790. PubMed ID: 29191980
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep CHORES: Estimating Hallmark Measures of Physical Activity Using Deep Learning.
    Mardini MT; Nerella S; Wanigatunga AA; Saldana S; Casanova R; Manini TM
    AMIA Annu Symp Proc; 2020; 2020():803-812. PubMed ID: 33936455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Correction of estimation bias of predictive equations of energy expenditure based on wrist/waist-mounted accelerometers.
    Ho CS; Chang CH; Lin KC; Huang CC; Hsu YJ
    PeerJ; 2019; 7():e7973. PubMed ID: 31720110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure.
    Imboden MT; Nelson MB; Kaminsky LA; Montoye AH
    Br J Sports Med; 2018 Jul; 52(13):844-850. PubMed ID: 28483930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validity of uniaxial accelerometry during activities of daily living in children.
    Eisenmann JC; Strath SJ; Shadrick D; Rigsby P; Hirsch N; Jacobson L
    Eur J Appl Physiol; 2004 Mar; 91(2-3):259-63. PubMed ID: 14569402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of a Wireless Network of Accelerometers for Improved Measurement of Human Energy Expenditure.
    Montoye AH; Dong B; Biswas S; Pfeiffer KA
    Electronics (Basel); 2014; 3(2):205-220. PubMed ID: 25530874
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of a wireless accelerometer network for energy expenditure measurement.
    Montoye AH; Dong B; Biswas S; Pfeiffer KA
    J Sports Sci; 2016 Nov; 34(21):2130-9. PubMed ID: 26942316
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simultaneous heart rate-motion sensor technique to estimate energy expenditure.
    Strath SJ; Bassett DR; Swartz AM; Thompson DL
    Med Sci Sports Exerc; 2001 Dec; 33(12):2118-23. PubMed ID: 11740308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of automatic wear-time detection algorithms in a free-living setting of wrist-worn and hip-worn ActiGraph GT3X.
    Knaier R; Höchsmann C; Infanger D; Hinrichs T; Schmidt-Trucksäss A
    BMC Public Health; 2019 Feb; 19(1):244. PubMed ID: 30819148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calibration and validation of accelerometer-based activity monitors: A systematic review of machine-learning approaches.
    Farrahi V; Niemelä M; Kangas M; Korpelainen R; Jämsä T
    Gait Posture; 2019 Feb; 68():285-299. PubMed ID: 30579037
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laboratory-based and free-living algorithms for energy expenditure estimation in preschool children: A free-living evaluation.
    Ahmadi MN; Chowdhury A; Pavey T; Trost SG
    PLoS One; 2020; 15(5):e0233229. PubMed ID: 32433717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Learning to Predict Energy Expenditure and Activity Intensity in Free Living Conditions using Wrist-specific Accelerometry.
    Nawaratne R; Alahakoon D; De Silva D; O'Halloran PD; Montoye AH; Staley K; Nicholson M; Kingsley MI
    J Sports Sci; 2021 Mar; 39(6):683-690. PubMed ID: 33121379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of Physical Activity in Adults Using Wrist Accelerometers.
    Liu F; Wanigatunga AA; Schrack JA
    Epidemiol Rev; 2022 Jan; 43(1):65-93. PubMed ID: 34215874
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composite activity type and stride-specific energy expenditure estimation model for thigh-worn accelerometry.
    Lendt C; Hansen N; Froböse I; Stewart T
    Int J Behav Nutr Phys Act; 2024 Sep; 21(1):99. PubMed ID: 39256837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Validation of a physical activity accelerometer device worn on the hip and wrist against polysomnography.
    Full KM; Kerr J; Grandner MA; Malhotra A; Moran K; Godoble S; Natarajan L; Soler X
    Sleep Health; 2018 Apr; 4(2):209-216. PubMed ID: 29555136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A statistical estimation framework for energy expenditure of physical activities from a wrist-worn accelerometer.
    Qiao Wang ; Lohit S; Toledo MJ; Buman MP; Turaga P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2631-2635. PubMed ID: 28268862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of cut-off points for the Move4 accelerometer in children aged 8-13 years.
    Beck F; Marzi I; Eisenreich A; Seemüller S; Tristram C; Reimers AK
    BMC Sports Sci Med Rehabil; 2023 Nov; 15(1):163. PubMed ID: 38017586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of physical activity and energy expenditure by GPS combined with accelerometry in real-life conditions.
    Nguyen DM; Lecoultre V; Sunami Y; Schutz Y
    J Phys Act Health; 2013 Aug; 10(6):880-8. PubMed ID: 23072762
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calibration of activity-related energy expenditure in the Hispanic Community Health Study/Study of Latinos (HCHS/SOL).
    Shaw PA; McMurray R; Butte N; Sotres-Alvarez D; Sun H; Stoutenberg M; Evenson KR; Wong WW; Moncrieft AE; Sanchez-Johnsen LAP; Carnethon MR; Arredondo E; Kaplan RC; Matthews CE; Mossavar-Rahmani Y
    J Sci Med Sport; 2019 Mar; 22(3):300-306. PubMed ID: 30177242
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.