These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33810670)
1. Describing adsorption of benzene, thiophene, and xenon on coinage metals by using the Zaremba-Kohn theory-based model. Adhikari S; Nepal NK; Tang H; Ruzsinszky A J Chem Phys; 2021 Mar; 154(12):124705. PubMed ID: 33810670 [TBL] [Abstract][Full Text] [Related]
2. Modeling adsorption and reactions of organic molecules at metal surfaces. Liu W; Tkatchenko A; Scheffler M Acc Chem Res; 2014 Nov; 47(11):3369-77. PubMed ID: 24915492 [TBL] [Abstract][Full Text] [Related]
3. van der Waals density functionals applied to corundum-type sesquioxides: bulk properties and adsorption of CH3 and C6H6 on (0001) surfaces. Dabaghmanesh S; Neyts EC; Partoens B Phys Chem Chem Phys; 2016 Aug; 18(33):23139-46. PubMed ID: 27494541 [TBL] [Abstract][Full Text] [Related]
4. A Density Functional Benchmark for Dehydrogenation and Dehalogenation Reactions on Coinage Metal Surfaces. Chen L; Rosen J; Björk J Chemphyschem; 2024 Oct; ():e202400865. PubMed ID: 39353856 [TBL] [Abstract][Full Text] [Related]
5. Electronic Exchange and Correlation in van der Waals Systems: Balancing Semilocal and Nonlocal Energy Contributions. Hermann J; Tkatchenko A J Chem Theory Comput; 2018 Mar; 14(3):1361-1369. PubMed ID: 29447445 [TBL] [Abstract][Full Text] [Related]
6. Including screening in van der Waals corrected density functional theory calculations: the case of atoms and small molecules physisorbed on graphene. Silvestrelli PL; Ambrosetti A J Chem Phys; 2014 Mar; 140(12):124107. PubMed ID: 24697424 [TBL] [Abstract][Full Text] [Related]
7. van der Waals exchange-correlation functionals over bulk and surface properties of transition metals. Avelar J; Bruix A; Garza J; Vargas R J Phys Condens Matter; 2019 Aug; 31(31):315501. PubMed ID: 30978711 [TBL] [Abstract][Full Text] [Related]
8. First principles study of graphene on metals with the SCAN and SCAN+rVV10 functionals. Shepard S; Smeu M J Chem Phys; 2019 Apr; 150(15):154702. PubMed ID: 31005078 [TBL] [Abstract][Full Text] [Related]
9. Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces. Carrasco J; Liu W; Michaelides A; Tkatchenko A J Chem Phys; 2014 Feb; 140(8):084704. PubMed ID: 24588188 [TBL] [Abstract][Full Text] [Related]
10. Reinvestigating oxygen adsorption on Ag(111) by using strongly constrained and appropriately normed semi-local density functional with the revised Vydrov van Voorhis van der Waals force correction. Hinsch JJ; Liu J; Wang Y J Chem Phys; 2021 Dec; 155(23):234704. PubMed ID: 34937376 [TBL] [Abstract][Full Text] [Related]
11. Competing adsorption mechanisms of pyridine on Cu, Ag, Au, and Pt(110) surfaces. Malone W; von der Heyde J; Kara A J Chem Phys; 2018 Dec; 149(21):214703. PubMed ID: 30525717 [TBL] [Abstract][Full Text] [Related]
12. Physical adsorption: theory of van der Waals interactions between particles and clean surfaces. Tao J; Rappe AM Phys Rev Lett; 2014 Mar; 112(10):106101. PubMed ID: 24679308 [TBL] [Abstract][Full Text] [Related]
13. Tuning the work function of stepped metal surfaces by adsorption of organic molecules. Jiang Y; Li J; Su G; Ferri N; Liu W; Tkatchenko A J Phys Condens Matter; 2017 May; 29(20):204001. PubMed ID: 28345536 [TBL] [Abstract][Full Text] [Related]
14. Density-functional description of polymer crystals: A comparative study of recent van der Waals functionals. Pham TH; Ramprasad R; Nguyen HV J Chem Phys; 2016 Jun; 144(21):214905. PubMed ID: 27276968 [TBL] [Abstract][Full Text] [Related]
15. Perspectives on van der Waals Density Functionals: The Case of TiS Krogel JT; Yuk SF; Kent PRC; Cooper VR J Phys Chem A; 2020 Nov; 124(47):9867-9876. PubMed ID: 33190498 [TBL] [Abstract][Full Text] [Related]
16. The role of van der Waals forces in water adsorption on metals. Carrasco J; Klimeš J; Michaelides A J Chem Phys; 2013 Jan; 138(2):024708. PubMed ID: 23320714 [TBL] [Abstract][Full Text] [Related]
17. Influence of the van der Waals interaction in the dissociation dynamics of N2 on W(110) from first principles. Martin-Gondre L; Juaristi JI; Blanco-Rey M; Díez Muiño R; Alducin M J Chem Phys; 2015 Feb; 142(7):074704. PubMed ID: 25702021 [TBL] [Abstract][Full Text] [Related]
18. Comparing van der Waals DFT methods for water on NaCl(001) and MgO(001). Kebede GG; Spångberg D; Mitev PD; Broqvist P; Hermansson K J Chem Phys; 2017 Feb; 146(6):064703. PubMed ID: 28201901 [TBL] [Abstract][Full Text] [Related]
19. Physisorption of nucleobases on graphene: a comparative van der Waals study. Le D; Kara A; Schröder E; Hyldgaard P; Rahman TS J Phys Condens Matter; 2012 Oct; 24(42):424210. PubMed ID: 23032709 [TBL] [Abstract][Full Text] [Related]
20. London Dispersion Corrections to Density Functional Theory for Transition Metals Based on Fitting to Experimental Temperature-Programmed Desorption of Benzene Monolayers. Yang H; Cheng T; Goddard WA J Phys Chem Lett; 2021 Jan; 12(1):73-79. PubMed ID: 33306392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]