These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 33810678)

  • 1. Improving molecular force fields across configurational space by combining supervised and unsupervised machine learning.
    Fonseca G; Poltavsky I; Vassilev-Galindo V; Tkatchenko A
    J Chem Phys; 2021 Mar; 154(12):124102. PubMed ID: 33810678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Force Field-Aided Cluster Expansion Approach to Phase Diagram of Alloyed Materials.
    Xie JZ; Zhou XY; Jin B; Jiang H
    J Chem Theory Comput; 2024 Jul; 20(14):6207-6217. PubMed ID: 38940547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Challenges for machine learning force fields in reproducing potential energy surfaces of flexible molecules.
    Vassilev-Galindo V; Fonseca G; Poltavsky I; Tkatchenko A
    J Chem Phys; 2021 Mar; 154(9):094119. PubMed ID: 33685131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BIGDML-Towards accurate quantum machine learning force fields for materials.
    Sauceda HE; Gálvez-González LE; Chmiela S; Paz-Borbón LO; Müller KR; Tkatchenko A
    Nat Commun; 2022 Jun; 13(1):3733. PubMed ID: 35768400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient sampling of high-energy states by machine learning force fields.
    Plazinski W; Plazinska A; Brzyska A
    Phys Chem Chem Phys; 2020 Jul; 22(25):14364-14374. PubMed ID: 32568319
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving machine learning force fields for molecular dynamics simulations with fine-grained force metrics.
    Wang Z; Wu H; Sun L; He X; Liu Z; Shao B; Wang T; Liu TY
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37458355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating deep learning with memcomputing.
    Manukian H; Traversa FL; Di Ventra M
    Neural Netw; 2019 Feb; 110():1-7. PubMed ID: 30458316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproducing global potential energy surfaces with continuous-filter convolutional neural networks.
    Brorsen KR
    J Chem Phys; 2019 May; 150(20):204104. PubMed ID: 31153202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force Field Analysis Software and Tools (FFAST): Assessing Machine Learning Force Fields under the Microscope.
    Fonseca G; Poltavsky I; Tkatchenko A
    J Chem Theory Comput; 2023 Dec; 19(23):8706-8717. PubMed ID: 38011895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vicinal support vector classifier using supervised kernel-based clustering.
    Yang X; Cao A; Song Q; Schaefer G; Su Y
    Artif Intell Med; 2014 Mar; 60(3):189-96. PubMed ID: 24637294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SchNet - A deep learning architecture for molecules and materials.
    Schütt KT; Sauceda HE; Kindermans PJ; Tkatchenko A; Müller KR
    J Chem Phys; 2018 Jun; 148(24):241722. PubMed ID: 29960322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion.
    Nath A; Subbiah K
    Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emergence of machine learning force fields in drug design.
    Chen M; Jiang X; Zhang L; Chen X; Wen Y; Gu Z; Li X; Zheng M
    Med Res Rev; 2024 May; 44(3):1147-1182. PubMed ID: 38173298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting Machine-Learning Prediction of Molecular Activity: Is an Applicability Domain Needed for Quantitative Structure-Activity Relationship Models Based on Deep Neural Networks?
    Liu R; Wang H; Glover KP; Feasel MG; Wallqvist A
    J Chem Inf Model; 2019 Jan; 59(1):117-126. PubMed ID: 30412667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining machine learning and high-throughput experimentation to discover photocatalytically active organic molecules.
    Li X; Maffettone PM; Che Y; Liu T; Chen L; Cooper AI
    Chem Sci; 2021 Aug; 12(32):10742-10754. PubMed ID: 34476057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient interatomic descriptors for accurate machine learning force fields of extended molecules.
    Kabylda A; Vassilev-Galindo V; Chmiela S; Poltavsky I; Tkatchenko A
    Nat Commun; 2023 Jun; 14(1):3562. PubMed ID: 37322039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-Driven Prediction of Configurational Stability of Molecule-Adsorbed Heterogeneous Catalysts.
    Noh J; Chang H
    J Chem Inf Model; 2023 Oct; 63(19):5981-5995. PubMed ID: 37715300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep generative learning for automated EHR diagnosis of traditional Chinese medicine.
    Liang Z; Liu J; Ou A; Zhang H; Li Z; Huang JX
    Comput Methods Programs Biomed; 2019 Jun; 174():17-23. PubMed ID: 29801696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional sparse kernel network for unsupervised medical image analysis.
    Ahn E; Kumar A; Fulham M; Feng D; Kim J
    Med Image Anal; 2019 Aug; 56():140-151. PubMed ID: 31229759
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.