These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 33810723)

  • 1. Particles to partial differential equations parsimoniously.
    Arbabi H; Kevrekidis IG
    Chaos; 2021 Mar; 31(3):033137. PubMed ID: 33810723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent Spaces for Coupled Oscillators.
    Thiem TN; Kooshkbaghi M; Bertalan T; Laing CR; Kevrekidis IG
    Front Comput Neurosci; 2020; 14():36. PubMed ID: 32528268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning data-driven discretizations for partial differential equations.
    Bar-Sinai Y; Hoyer S; Hickey J; Brenner MP
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15344-15349. PubMed ID: 31311866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coarse-scale PDEs from fine-scale observations via machine learning.
    Lee S; Kooshkbaghi M; Spiliotis K; Siettos CI; Kevrekidis IG
    Chaos; 2020 Jan; 30(1):013141. PubMed ID: 32013472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning black- and gray-box chemotactic PDEs/closures from agent based Monte Carlo simulation data.
    Lee S; Psarellis YM; Siettos CI; Kevrekidis IG
    J Math Biol; 2023 Jun; 87(1):15. PubMed ID: 37341784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning effective stochastic differential equations from microscopic simulations: Linking stochastic numerics to deep learning.
    Dietrich F; Makeev A; Kevrekidis G; Evangelou N; Bertalan T; Reich S; Kevrekidis IG
    Chaos; 2023 Feb; 33(2):023121. PubMed ID: 36859209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-supervised learning and prediction of microstructure evolution with convolutional recurrent neural networks.
    Yang K; Cao Y; Zhang Y; Fan S; Tang M; Aberg D; Sadigh B; Zhou F
    Patterns (N Y); 2021 May; 2(5):100243. PubMed ID: 34036288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning hydrodynamic equations for active matter from particle simulations and experiments.
    Supekar R; Song B; Hastewell A; Choi GPT; Mietke A; Dunkel J
    Proc Natl Acad Sci U S A; 2023 Feb; 120(7):e2206994120. PubMed ID: 36763535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equation-free multiscale computation: algorithms and applications.
    Kevrekidis IG; Samaey G
    Annu Rev Phys Chem; 2009; 60():321-44. PubMed ID: 19335220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promising directions of machine learning for partial differential equations.
    Brunton SL; Kutz JN
    Nat Comput Sci; 2024 Jun; ():. PubMed ID: 38942926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Learning partial differential equations for biological transport models from noisy spatio-temporal data.
    Lagergren JH; Nardini JT; Michael Lavigne G; Rutter EM; Flores KB
    Proc Math Phys Eng Sci; 2020 Feb; 476(2234):20190800. PubMed ID: 32201481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine-learning-based data-driven discovery of nonlinear phase-field dynamics.
    Kiyani E; Silber S; Kooshkbaghi M; Karttunen M
    Phys Rev E; 2022 Dec; 106(6-2):065303. PubMed ID: 36671129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of Partial Differential Equations from Highly Noisy and Sparse Data with Physics-Informed Information Criterion.
    Xu H; Zeng J; Zhang D
    Research (Wash D C); 2023; 6():0147. PubMed ID: 37214196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven discovery of partial differential equations.
    Rudy SH; Brunton SL; Proctor JL; Kutz JN
    Sci Adv; 2017 Apr; 3(4):e1602614. PubMed ID: 28508044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatially distributed stochastic systems: Equation-free and equation-assisted preconditioned computations.
    Qiao L; Erban R; Kelley CT; Kevrekidis IG
    J Chem Phys; 2006 Nov; 125(20):204108. PubMed ID: 17144691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PDE-LEARN: Using deep learning to discover partial differential equations from noisy, limited data.
    Stephany R; Earls C
    Neural Netw; 2024 Jun; 174():106242. PubMed ID: 38521016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust data-driven discovery of governing physical laws with error bars.
    Zhang S; Lin G
    Proc Math Phys Eng Sci; 2018 Sep; 474(2217):20180305. PubMed ID: 30333709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WEAK SINDY FOR PARTIAL DIFFERENTIAL EQUATIONS.
    Messenger DA; Bortz DM
    J Comput Phys; 2021 Oct; 443():. PubMed ID: 34744183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine discovery of partial differential equations from spatiotemporal data: A sparse Bayesian learning framework.
    Yuan Y; Li X; Li L; Jiang FJ; Tang X; Zhang F; Goncalves J; Voss HU; Ding H; Kurths J
    Chaos; 2023 Nov; 33(11):. PubMed ID: 37967264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coarse-grained computations for a micellar system.
    Kopelevich DI; Panagiotopoulos AZ; Kevrekidis IG
    J Chem Phys; 2005 Jan; 122(4):44907. PubMed ID: 15740298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.