These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33810737)

  • 1. Characterizing dynamical transitions by statistical complexity measures based on ordinal pattern transition networks.
    Huang M; Sun Z; Donner RV; Zhang J; Guan S; Zou Y
    Chaos; 2021 Mar; 31(3):033127. PubMed ID: 33810737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unveiling the Connectivity of Complex Networks Using Ordinal Transition Methods.
    Almendral JA; Leyva I; Sendiña-Nadal I
    Entropy (Basel); 2023 Jul; 25(7):. PubMed ID: 37510026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing stochastic time series with ordinal networks.
    Pessa AAB; Ribeiro HV
    Phys Rev E; 2019 Oct; 100(4-1):042304. PubMed ID: 31770975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing Complex Dynamics in the Classical and Semi-Classical Duffing Oscillator Using Ordinal Patterns Analysis.
    Trostel ML; Misplon MZR; Aragoneses A; Pattanayak AK
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordinal partition transition network based complexity measures for inferring coupling direction and delay from time series.
    Ruan Y; Donner RV; Guan S; Zou Y
    Chaos; 2019 Apr; 29(4):043111. PubMed ID: 31042940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing ordinal partition transition networks from multivariate time series.
    Zhang J; Zhou J; Tang M; Guo H; Small M; Zou Y
    Sci Rep; 2017 Aug; 7(1):7795. PubMed ID: 28798326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ordinal pattern based similarity analysis for EEG recordings.
    Ouyang G; Dang C; Richards DA; Li X
    Clin Neurophysiol; 2010 May; 121(5):694-703. PubMed ID: 20097130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ordpy: A Python package for data analysis with permutation entropy and ordinal network methods.
    Pessa AAB; Ribeiro HV
    Chaos; 2021 Jun; 31(6):063110. PubMed ID: 34241315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting chaotic with stochastic dynamics via ordinal transition networks.
    Olivares F; Zanin M; Zunino L; Pérez DG
    Chaos; 2020 Jun; 30(6):063101. PubMed ID: 32611124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized Ordinal Patterns and the KS-Entropy.
    Gutjahr T; Keller K
    Entropy (Basel); 2021 Aug; 23(8):. PubMed ID: 34441237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing system dynamics with a weighted and directed network constructed from time series data.
    Sun X; Small M; Zhao Y; Xue X
    Chaos; 2014 Jun; 24(2):024402. PubMed ID: 24985456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying the complexity of the delayed logistic map.
    Masoller C; Rosso OA
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1935):425-38. PubMed ID: 21149381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing dynamics of time series via Hill-index complexity measure.
    Peng K; Shang P; Yin Y
    Chaos; 2020 Nov; 30(11):113139. PubMed ID: 33261338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordinal pattern-based complexity analysis of high-dimensional chaotic time series.
    Kottlarz I; Parlitz U
    Chaos; 2023 May; 33(5):. PubMed ID: 37133925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dispersion network-transition entropy: A metric for characterizing the complexity of nonlinear signals.
    Geng B; Wang H; Shen X; Zhang H; Yan Y
    Phys Rev E; 2024 Aug; 110(2-1):024205. PubMed ID: 39295027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variance of permutation entropy and the influence of ordinal pattern selection.
    Little DJ; Kane DM
    Phys Rev E; 2017 May; 95(5-1):052126. PubMed ID: 28618474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Delay Identification Using Multiscale Ordinal Quantifiers.
    Soriano MC; Zunino L
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale ordinal network analysis of human cardiac dynamics.
    McCullough M; Small M; Iu HHC; Stemler T
    Philos Trans A Math Phys Eng Sci; 2017 Jun; 375(2096):. PubMed ID: 28507237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regenerating time series from ordinal networks.
    McCullough M; Sakellariou K; Stemler T; Small M
    Chaos; 2017 Mar; 27(3):035814. PubMed ID: 28364757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field.
    Stam CJ
    Clin Neurophysiol; 2005 Oct; 116(10):2266-301. PubMed ID: 16115797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.