These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33811660)

  • 1. Brown meets green: light and nutrients alter detritivore assimilation of microbial nutrients from leaf litter.
    Price TL; Harper J; Francoeur SN; Halvorson HM; Kuehn KA
    Ecology; 2021 Jun; 102(6):e03358. PubMed ID: 33811660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary and taxonomic controls on incorporation of microbial carbon and phosphorus by detritivorous caddisflies.
    Halvorson HM; White G; Scott JT; Evans-White MA
    Oecologia; 2016 Feb; 180(2):567-79. PubMed ID: 26497125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inorganic nutrients on relative contributions of fungi and bacteria to carbon flow from submerged decomposing leaf litter.
    Gulis V; Suberkropp K
    Microb Ecol; 2003 Jan; 45(1):11-9. PubMed ID: 12447584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams.
    Manning DW; Rosemond AD; Gulis V; Benstead JP; Kominoski JS; Maerz JC
    Ecol Appl; 2016 Sep; 26(6):1745-1757. PubMed ID: 27755690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detrital stoichiometry as a critical nexus for the effects of streamwater nutrients on leaf litter breakdown rates.
    Manning DW; Rosemond AD; Kominoski JS; Gulis V; Benstead JP; Maerz JC
    Ecology; 2015 Aug; 96(8):2214-24. PubMed ID: 26405746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantity and quality limit detritivore growth: mechanisms revealed by ecological stoichiometry and co-limitation theory.
    Halvorson HM; Sperfeld E; Evans-White MA
    Ecology; 2017 Dec; 98(12):2995-3002. PubMed ID: 28902394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry.
    Fuller CL; Evans-White MA; Entrekin SA
    Oecologia; 2015 Mar; 177(3):837-848. PubMed ID: 25428786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorus availability modulates the toxic effect of silver on aquatic fungi and leaf litter decomposition.
    Funck JA; Clivot H; Felten V; Rousselle P; Guérold F; Danger M
    Aquat Toxicol; 2013 Nov; 144-145():199-207. PubMed ID: 24184839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Filter-feeders have differential bottom-up impacts on green and brown food webs.
    Atkinson CL; Halvorson HM; Kuehn KA; Winebarger M; Hamid A; Waters MN
    Oecologia; 2021 Jan; 195(1):187-198. PubMed ID: 33389154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Periphytic algae decouple fungal activity from leaf litter decomposition via negative priming.
    Halvorson HM; Barry JR; Lodato MB; Findlay RH; Francoeur SN; Kuehn KA
    Funct Ecol; 2019 Jan; 33(1):188-201. PubMed ID: 31673197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrients and temperature additively increase stream microbial respiration.
    Manning DWP; Rosemond AD; Gulis V; Benstead JP; Kominoski JS
    Glob Chang Biol; 2018 Jan; 24(1):e233-e247. PubMed ID: 28902445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers.
    Kuehn KA; Francoeur SN; Findlay RH; Neely RK
    Ecology; 2014 Mar; 95(3):749-62. PubMed ID: 24804458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconciling the role of terrestrial leaves in pond food webs: a whole-ecosystem experiment.
    Holgerson MA; Post DM; Skelly DK
    Ecology; 2016 Jul; 97(7):1771-1782. PubMed ID: 27859166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient enrichment in water more than in leaves affects aquatic microbial litter processing.
    Biasi C; Graça MAS; Santos S; Ferreira V
    Oecologia; 2017 Jun; 184(2):555-568. PubMed ID: 28421326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways.
    Greenwood JL; Rosemond AD; Wallace JB; Cross WF; Weyers HS
    Oecologia; 2007 Apr; 151(4):637-49. PubMed ID: 17146682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemistry Matters: High Leaf Litter Consumption Does Not Represent a Direct Increase in Shredders' Biomass.
    Cararo ER; Bernardi JP; Lima-Rezende CA; Magro JD; Rezende RS
    Neotrop Entomol; 2023 Jun; 52(3):452-462. PubMed ID: 37129841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linking tree genetics and stream consumers: isotopic tracers elucidate controls on carbon and nitrogen assimilation.
    Compson ZG; Hungate BA; Whitham TG; Koch GW; Dijkstra P; Siders AC; Wojtowicz T; Jacobs R; Rakestraw DN; Allred KE; Sayer CK; Marks JC
    Ecology; 2018 Aug; 99(8):1759-1770. PubMed ID: 29603188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nutrient and stoichiometric time series measurements of decomposing coarse detritus in freshwaters.
    Robbins CJ; Norman BC; Halvorson HM; Manning DWP; Bastias E; Biasi C; Dodd AK; Eckert RA; Gossiaux A; Jabiol J; Mehring AS; Pastor A
    Ecology; 2023 Aug; 104(8):e4114. PubMed ID: 37260293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional importance and diversity of fungi during standing grass litter decomposition.
    Lodato MB; Boyette JS; Smilo RA; Jackson CR; Halvorson HM; Kuehn KA
    Oecologia; 2021 Feb; 195(2):499-512. PubMed ID: 33423104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The estimated impact of fungi on nutrient dynamics during decomposition of Phragmites australis leaf sheaths and stems.
    Van Ryckegem G; Van Driessche G; Van Beeumen JJ; Verbeken A
    Microb Ecol; 2006 Oct; 52(3):564-74. PubMed ID: 17006744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.