BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 33812056)

  • 1. Enhancement of target toxin neutralization effect in vivo by PEGylation of multifunctionalized lipid nanoparticles.
    Koide H; Suzuki H; Ochiai H; Egami H; Hamashima Y; Oku N; Asai T
    Biochem Biophys Res Commun; 2021 May; 555():32-39. PubMed ID: 33812056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of abiotic polymer ligand-decorated lipid nanoparticles for effective neutralization of target toxins in the blood.
    Koide H; Yamauchi I; Hoshino Y; Yasuno G; Okamoto T; Akashi S; Saito K; Oku N; Asai T
    Biomater Sci; 2021 Aug; 9(16):5588-5598. PubMed ID: 34241600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, Positron Emission Tomography Imaging, and Therapy of Diabody Targeted Drug Lipid Nanoparticles in a Prostate Cancer Murine Model.
    Wong P; Li L; Chea J; Delgado MK; Poku E; Szpikowska B; Bowles N; Minnix M; Colcher D; Wong JYC; Shively JE; Yazaki PJ
    Cancer Biother Radiopharm; 2017 Sep; 32(7):247-257. PubMed ID: 28910151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes.
    Hashiba K; Sato Y; Harashima H
    J Control Release; 2017 Sep; 262():239-246. PubMed ID: 28774839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PEG shedding-rate-dependent blood clearance of PEGylated lipid nanoparticles in mice: Faster PEG shedding attenuates anti-PEG IgM production.
    Suzuki T; Suzuki Y; Hihara T; Kubara K; Kondo K; Hyodo K; Yamazaki K; Ishida T; Ishihara H
    Int J Pharm; 2020 Oct; 588():119792. PubMed ID: 32827675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable Loading and Delivery of Melittin with Lipid-Coated Polymeric Nanoparticles for Effective Tumor Therapy with Negligible Systemic Toxicity.
    Ye R; Zheng Y; Chen Y; Wei X; Shi S; Chen Y; Zhu W; Wang A; Yang L; Xu Y; Peng J
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):55902-55912. PubMed ID: 34793125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury.
    Waggoner LE; Miyasaki KF; Kwon EJ
    Biomater Sci; 2023 Jun; 11(12):4238-4253. PubMed ID: 36987922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward In Vivo Administration.
    Kurimoto S; Yoshinaga N; Igarashi K; Matsumoto Y; Cabral H; Uchida S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30987102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of PEGylation on biodistribution and gene silencing of siRNA/lipid nanoparticle complexes.
    Bao Y; Jin Y; Chivukula P; Zhang J; Liu Y; Liu J; Clamme JP; Mahato RI; Ng D; Ying W; Wang Y; Yu L
    Pharm Res; 2013 Feb; 30(2):342-51. PubMed ID: 22983644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics.
    Jung SH; Lim DH; Jung SH; Lee JE; Jeong KS; Seong H; Shin BC
    Eur J Pharm Sci; 2009 Jun; 37(3-4):313-20. PubMed ID: 19491021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient siRNA Delivery by Lipid Nanoparticles Modified with a Nonstandard Macrocyclic Peptide for EpCAM-Targeting.
    Sakurai Y; Mizumura W; Murata M; Hada T; Yamamoto S; Ito K; Iwasaki K; Katoh T; Goto Y; Takagi A; Kohara M; Suga H; Harashima H
    Mol Pharm; 2017 Oct; 14(10):3290-3298. PubMed ID: 28789523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles.
    Digiacomo L; Renzi S; Quagliarini E; Pozzi D; Amenitsch H; Ferri G; Pesce L; De Lorenzi V; Matteoli G; Cardarelli F; Caracciolo G
    Nanomedicine; 2023 Sep; 53():102697. PubMed ID: 37507061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The presence of PEG-lipids in liposomes does not reduce melittin binding but decreases melittin-induced leakage.
    Rex S; Bian J; Silvius JR; Lafleur M
    Biochim Biophys Acta; 2002 Feb; 1558(2):211-21. PubMed ID: 11779570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid nanoparticles with PEG-variant surface modifications mediate genome editing in the mouse retina.
    Gautam M; Jozic A; Su GL; Herrera-Barrera M; Curtis A; Arrizabalaga S; Tschetter W; Ryals RC; Sahay G
    Nat Commun; 2023 Oct; 14(1):6468. PubMed ID: 37833442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chelation, formulation, encapsulation, retention, and in vivo biodistribution of hydrophobic nanoparticles labelled with
    Hervella P; Dam JH; Thisgaard H; Baun C; Olsen BB; Høilund-Carlsen PF; Needham D
    J Control Release; 2018 Dec; 291():11-25. PubMed ID: 30291986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of PEG Anchor and Serum on Lipid Nanoparticles: Development of a Nanoparticles Tracking Method.
    Berger M; Degey M; Leblond Chain J; Maquoi E; Evrard B; Lechanteur A; Piel G
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36839919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery.
    Gao J; Xie C; Zhang M; Wei X; Yan Z; Ren Y; Ying M; Lu W
    Nanoscale; 2016 Apr; 8(13):7209-16. PubMed ID: 26972577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Stability of siRNA-Loaded Lipid Nanoparticles Prepared with a PEG-Monoacyl Fatty Acid Facilitates Ligand-Mediated siRNA Delivery.
    Sakurai Y; Mizumura W; Ito K; Iwasaki K; Katoh T; Goto Y; Suga H; Harashima H
    Mol Pharm; 2020 Apr; 17(4):1397-1404. PubMed ID: 32091909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipidoid nanoparticles increase ATP uptake into hypoxic brain endothelial cells.
    Khare P; Conway JF; S Manickam D
    Eur J Pharm Biopharm; 2022 Nov; 180():238-250. PubMed ID: 36265829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. siRNA delivery to lymphatic endothelial cells via ApoE-mediated uptake by lipid nanoparticles.
    Sakurai Y; Yoshikawa K; Arai K; Kazaoka A; Aoki S; Ito K; Nakai Y; Tange K; Furihata T; Tanaka H; Akita H
    J Control Release; 2023 Jan; 353():125-133. PubMed ID: 36414194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.