BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33812139)

  • 1. Modeling and improving arrayed microalgal biofilm attached culture system.
    Huang J; Chu R; Chang T; Cheng P; Jiang J; Yao T; Zhou C; Liu T; Ruan R
    Bioresour Technol; 2021 Jul; 331():124931. PubMed ID: 33812139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new biofilm based microalgal cultivation approach on shifting sand surface for desert cyanobacterium Microcoleus vaginatus.
    Lan S; Wu L; Yang H; Zhang D; Hu C
    Bioresour Technol; 2017 Aug; 238():602-608. PubMed ID: 28482286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microalgal biofilms: A further step over current microalgal cultivation techniques.
    Mantzorou A; Ververidis F
    Sci Total Environ; 2019 Feb; 651(Pt 2):3187-3201. PubMed ID: 30463168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of key factors on attached microalgae growth from the internal sight of biofilm.
    Yang Y; Zhuang LL; Yang T; Zhang J
    Sci Total Environ; 2022 Mar; 811():151417. PubMed ID: 34742981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive modeling and predicting light transmission in microalgal biofilm.
    Ma S; Huang Y; Zhang B; Zhu X; Xia A; Zhu X; Liao Q
    J Environ Manage; 2023 Jan; 326(Pt A):116757. PubMed ID: 36395642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Chlorella vulgaris biomass productivity cultivated in biofilm and suspension from the aspect of light transmission and microalgae affinity to carbon dioxide.
    Huang Y; Xiong W; Liao Q; Fu Q; Xia A; Zhu X; Sun Y
    Bioresour Technol; 2016 Dec; 222():367-373. PubMed ID: 27741475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bifunctional lighting/supporting substrate for microalgal photosynthetic biofilm to bio-remove ammonia nitrogen from high turbidity wastewater.
    Zeng W; Ma S; Huang Y; Xia A; Zhu X; Zhu X; Liao Q
    Water Res; 2022 Sep; 223():119041. PubMed ID: 36081254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving biomass and carbohydrate production of microalgae in the rotating cultivation system on natural carriers.
    Mousavian Z; Safavi M; Salehirad A; Azizmohseni F; Hadizadeh M; Mirdamadi S
    AMB Express; 2023 Apr; 13(1):39. PubMed ID: 37119344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microalgal-bacterial biofilms for wastewater treatment: Operations, performances, mechanisms, and uncertainties.
    Zhang JT; Wang JX; Liu Y; Zhang Y; Wang JH; Chi ZY; Kong FT
    Sci Total Environ; 2024 Jan; 907():167974. PubMed ID: 37884155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chemical oxygen demand and chloramphenicol on attached microalgae growth: Physicochemical properties and microscopic mass transfer in biofilm.
    Li P; Yang Y; Zhuang LL; Hu Z; Zhang L; Ge S; Qian W; Tian W; Wu Y; Hu HY
    Bioresour Technol; 2024 May; 399():130561. PubMed ID: 38460558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiology of microalgal biofilm: a review on prediction of adhesion on substrates.
    Cheah YT; Chan DJC
    Bioengineered; 2021 Dec; 12(1):7577-7599. PubMed ID: 34605338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rice straw as microalgal biofilm bio-carrier: Effects of indigenous microorganisms on rice straw and microalgal biomass production.
    Yan H; Zhang Q; Wang Y; Cui X; Liu Y; Yu Z; Xu S; Ruan R
    J Environ Manage; 2023 Sep; 341():118075. PubMed ID: 37141712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and evaluation of substratum material selection for microalgal biofilm cultivation.
    Ji C; Wang H; Cui H; Zhang C; Li R; Liu T
    Appl Microbiol Biotechnol; 2023 Apr; 107(7-8):2707-2721. PubMed ID: 36922440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment.
    Huang KX; Vadiveloo A; Zhou JL; Yang L; Chen DZ; Gao F
    Bioresour Technol; 2023 May; 376():128941. PubMed ID: 36948428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment.
    Abinandan S; Subashchandrabose SR; Venkateswarlu K; Megharaj M
    Crit Rev Biotechnol; 2018 Dec; 38(8):1244-1260. PubMed ID: 29768936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review.
    Chen CY; Yeh KL; Aisyah R; Lee DJ; Chang JS
    Bioresour Technol; 2011 Jan; 102(1):71-81. PubMed ID: 20674344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing carbon dioxide utilization for microalgae biofilm cultivation.
    Blanken W; Schaap S; Theobald S; Rinzema A; Wijffels RH; Janssen M
    Biotechnol Bioeng; 2017 Apr; 114(4):769-776. PubMed ID: 27748511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantified trend of photosynthetic rate along the depth of microalgae biofilm.
    Zhuang LL; Tian W; Yang Y; Ge S; Li P; Sun S; Zhang J; Liang S
    Sci Total Environ; 2023 Jun; 876():162801. PubMed ID: 36907420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilm based attached cultivation technology for microalgal biorefineries-A review.
    Wang J; Liu W; Liu T
    Bioresour Technol; 2017 Nov; 244(Pt 2):1245-1253. PubMed ID: 28576483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insight into the comprehensive effect of carbon dioxide, light intensity and glucose on heterotrophic-assisted phototrophic microalgae biofilm growth: A multifactorial kinetic model.
    Ye Y; Ma S; Peng H; Huang Y; Zeng W; Xia A; Zhu X; Liao Q
    J Environ Manage; 2023 Jan; 325(Pt B):116582. PubMed ID: 36308961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.