These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 33812176)

  • 21. Expression of Rv2031c-Rv2626c fusion protein in Mycobacterium smegmatis enhances bacillary survival and modulates innate immunity in macrophages.
    Jiang H; Luo TL; Kang J; Xu ZK; Wang LM
    Mol Med Rep; 2018 May; 17(5):7307-7312. PubMed ID: 29568875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of 3-ketosteroid 1(2)-dehydrogenase in the pathogenicity of Mycobacterium tuberculosis.
    Brzezinska M; Szulc I; Brzostek A; Klink M; Kielbik M; Sulowska Z; Pawelczyk J; Dziadek J
    BMC Microbiol; 2013 Feb; 13():43. PubMed ID: 23425360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The fbpA/sapM double knock out strain of Mycobacterium tuberculosis is highly attenuated and immunogenic in macrophages.
    Saikolappan S; Estrella J; Sasindran SJ; Khan A; Armitige LY; Jagannath C; Dhandayuthapani S
    PLoS One; 2012; 7(5):e36198. PubMed ID: 22574140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterisation of iunH gene knockout strain from Mycobacterium tuberculosis.
    Villela AD; Rodrigues VD; Pinto AF; Wink PL; Sánchez-Quitian ZA; Petersen GO; Campos MM; Basso LA; Santos DS
    Mem Inst Oswaldo Cruz; 2017 Mar; 112(3):203-208. PubMed ID: 28225907
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein tyrosine kinase, PtkA, is required for Mycobacterium tuberculosis growth in macrophages.
    Wong D; Li W; Chao JD; Zhou P; Narula G; Tsui C; Ko M; Xie J; Martinez-Frailes C; Av-Gay Y
    Sci Rep; 2018 Jan; 8(1):155. PubMed ID: 29317718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cholesterol oxidase is indispensable in the pathogenesis of Mycobacterium tuberculosis.
    Klink M; Brzezinska M; Szulc I; Brzostek A; Kielbik M; Sulowska Z; Dziadek J
    PLoS One; 2013; 8(9):e73333. PubMed ID: 24039915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. IL-10 blocks phagosome maturation in mycobacterium tuberculosis-infected human macrophages.
    O'Leary S; O'Sullivan MP; Keane J
    Am J Respir Cell Mol Biol; 2011 Jul; 45(1):172-80. PubMed ID: 20889800
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of autophagy through CLEC4E in combination with TLR4: an innovative strategy to restrict the survival of
    Pahari S; Negi S; Aqdas M; Arnett E; Schlesinger LS; Agrewala JN
    Autophagy; 2020 Jun; 16(6):1021-1043. PubMed ID: 31462144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of Chicoric Acid and 13-Cis Retinoic Acid in Mycobacterium tuberculosis Infection Control by Human U937 Macrophage.
    Abd-Nikfarjam B; Nassiri-Asl M; Hajiaghayi M; Naserpour Farivar T
    Arch Immunol Ther Exp (Warsz); 2018 Oct; 66(5):399-406. PubMed ID: 29704020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATP synthase, an essential enzyme in growth and multiplication is modulated by protein tyrosine phosphatase in Mycobacterium tuberculosis H37Ra.
    Chatterjee A; Pandey S; Dhamija E; Jaiswal S; Yabaji SM; Srivastava KK
    Biochimie; 2019 Oct; 165():156-160. PubMed ID: 31377193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative profiles of intramacrophage behavior of Mycobacterium tuberculosis and Mycobacterium avium complex with different levels of virulence.
    Sano K; Sato K; Sano C; Shimizu T; Tomioka H
    Microbiol Immunol; 2002; 46(7):483-6. PubMed ID: 12222934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Strain virulence and the lysosomal response in macrophages infected with Mycobacterium tuberculosis.
    Hart PD; Armstrong JA
    Infect Immun; 1974 Oct; 10(4):742-6. PubMed ID: 4214780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Delta fbpA mutant derived from Mycobacterium tuberculosis H37Rv has an enhanced susceptibility to intracellular antimicrobial oxidative mechanisms, undergoes limited phagosome maturation and activates macrophages and dendritic cells.
    Katti MK; Dai G; Armitige LY; Rivera Marrero C; Daniel S; Singh CR; Lindsey DR; Dhandayuthapani S; Hunter RL; Jagannath C
    Cell Microbiol; 2008 Jun; 10(6):1286-303. PubMed ID: 18248626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Requirement of gene fadD33 for the growth of Mycobacterium tuberculosis in a hepatocyte cell line.
    Rindi L; Bonanni D; Lari N; Garzelli C
    New Microbiol; 2004 Apr; 27(2):125-31. PubMed ID: 15164622
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Mycobacterium tuberculosis SecA2 system subverts phagosome maturation to promote growth in macrophages.
    Sullivan JT; Young EF; McCann JR; Braunstein M
    Infect Immun; 2012 Mar; 80(3):996-1006. PubMed ID: 22215736
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mycobacterium tuberculosis EsxO (Rv2346c) promotes bacillary survival by inducing oxidative stress mediated genomic instability in macrophages.
    Mohanty S; Dal Molin M; Ganguli G; Padhi A; Jena P; Selchow P; Sengupta S; Meuli M; Sander P; Sonawane A
    Tuberculosis (Edinb); 2016 Jan; 96():44-57. PubMed ID: 26786654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the Mycobacterium tuberculosis protein PE-PGRS62 as a novel effector that functions to block phagosome maturation and inhibit iNOS expression.
    Thi EP; Hong CJ; Sanghera G; Reiner NE
    Cell Microbiol; 2013 May; 15(5):795-808. PubMed ID: 23167250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The bifunctional protein GlmU is a key factor in biofilm formation induced by alkylating stress in Mycobacterium smegmatis.
    Di Somma A; Caterino M; Soni V; Agarwal M; di Pasquale P; Zanetti S; Molicotti P; Cannas S; Nandicoori VK; Duilio A
    Res Microbiol; 2019; 170(4-5):171-181. PubMed ID: 30953691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of CwlM on autolysis and biofilm formation in Mycobacterium tuberculosis and Mycobacterium smegmatis.
    Wang C; Zhang Q; Tang X; An Y; Li S; Xu H; Li Y; Wang X; Luan W; Wang Y; Liu M; Yu L
    Int J Med Microbiol; 2019 Jan; 309(1):73-83. PubMed ID: 30563740
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of the fadD33 gene in the growth of Mycobacterium tuberculosis in the liver of BALB/c mice.
    Rindi L; Fattorini L; Bonanni D; Iona E; Freer G; Tan D; Dehò G; Orefici G; Garzelli C
    Microbiology (Reading); 2002 Dec; 148(Pt 12):3873-3880. PubMed ID: 12480891
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.