These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 33812519)
1. Editorial Commentary: Predicting Satisfaction After Hip Arthroscopy Using Machine Learning: What Do Treadmills and Black Boxes Have to Do With Arthroscopy? Domb BG; Rosinsky PJ Arthroscopy; 2021 Apr; 37(4):1152-1154. PubMed ID: 33812519 [TBL] [Abstract][Full Text] [Related]
2. Editorial Commentary: Personalized Hip Arthroscopy Outcome Prediction Using Machine Learning-The Future Is Here. Harris JD Arthroscopy; 2021 May; 37(5):1498-1502. PubMed ID: 33896503 [TBL] [Abstract][Full Text] [Related]
3. Application of Machine Learning for Predicting Clinically Meaningful Outcome After Arthroscopic Femoroacetabular Impingement Surgery. Nwachukwu BU; Beck EC; Lee EK; Cancienne JM; Waterman BR; Paul K; Nho SJ Am J Sports Med; 2020 Feb; 48(2):415-423. PubMed ID: 31869249 [TBL] [Abstract][Full Text] [Related]
5. Machine Learning Algorithms Predict Prolonged Opioid Use in Opioid-Naïve Primary Hip Arthroscopy Patients. Kunze KN; Polce EM; Alter TD; Nho SJ J Am Acad Orthop Surg Glob Res Rev; 2021 May; 5(5):e21.00093-8. PubMed ID: 34032690 [TBL] [Abstract][Full Text] [Related]
6. The potential role of machine learning in modelling advanced chronic liver disease. D'Amico G; Colli A; Malizia G; Casazza G Dig Liver Dis; 2023 Jun; 55(6):704-713. PubMed ID: 36586769 [TBL] [Abstract][Full Text] [Related]
7. Artificial Intelligence, Machine Learning, and Medicine: A Little Background Goes a Long Way Toward Understanding. Cote MP; Lubowitz JH; Brand JC; Rossi MJ Arthroscopy; 2021 Jun; 37(6):1699-1702. PubMed ID: 34090555 [TBL] [Abstract][Full Text] [Related]
8. Editorial Commentary: Big Data and Machine Learning in Medicine. Hohmann E Arthroscopy; 2022 Mar; 38(3):848-849. PubMed ID: 35248233 [TBL] [Abstract][Full Text] [Related]
9. Enhancing wrist arthroscopy: artificial intelligence applications for bone structure recognition using machine learning. Orgiu A; Karkazan B; Cannell S; Dechaumet L; Bennani Y; Grégory T Hand Surg Rehabil; 2024 Sep; 43(4):101717. PubMed ID: 38797353 [TBL] [Abstract][Full Text] [Related]
10. Automation, machine learning, and artificial intelligence in echocardiography: A brave new world. Gandhi S; Mosleh W; Shen J; Chow CM Echocardiography; 2018 Sep; 35(9):1402-1418. PubMed ID: 29974498 [TBL] [Abstract][Full Text] [Related]
12. Editorial Commentary: Machine Learning Can Indicate Hip Arthroscopy Procedures, Predict Postoperative Improvement, and Estimate Costs. Shapira J; Peskin B; Norman D Arthroscopy; 2022 Jul; 38(7):2217-2218. PubMed ID: 35809979 [TBL] [Abstract][Full Text] [Related]
13. Editorial Commentary: Machine Learning in Medicine Requires Clinician Input, Faces Barriers, and High-Quality Evidence Is Required to Demonstrate Improved Patient Outcomes. Pareek A; Martin RK Arthroscopy; 2022 Jun; 38(6):2106-2108. PubMed ID: 35660191 [TBL] [Abstract][Full Text] [Related]
14. Powerlifting score prediction using a machine learning method. Chau VH Math Biosci Eng; 2021 Jan; 18(2):1040-1050. PubMed ID: 33757174 [TBL] [Abstract][Full Text] [Related]
15. Radiographic Indices Are Not Predictive of Clinical Outcomes Among 1735 Patients Indicated for Hip Arthroscopic Surgery: A Machine Learning Analysis. Ramkumar PN; Karnuta JM; Haeberle HS; Sullivan SW; Nawabi DH; Ranawat AS; Kelly BT; Nwachukwu BU Am J Sports Med; 2020 Oct; 48(12):2910-2918. PubMed ID: 32924530 [TBL] [Abstract][Full Text] [Related]
16. Predicting Patient-Reported Outcomes Following Surgery Using Machine Learning. Hassan AM; Biaggi-Ondina A; Rajesh A; Asaad M; Nelson JA; Coert JH; Mehrara BJ; Butler CE Am Surg; 2023 Jan; 89(1):31-35. PubMed ID: 35722685 [TBL] [Abstract][Full Text] [Related]
17. Augmented intelligence in pediatric anesthesia and pediatric critical care. Görges M; Ansermino JM Curr Opin Anaesthesiol; 2020 Jun; 33(3):404-410. PubMed ID: 32324658 [TBL] [Abstract][Full Text] [Related]
18. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Buchlak QD; Esmaili N; Leveque JC; Farrokhi F; Bennett C; Piccardi M; Sethi RK Neurosurg Rev; 2020 Oct; 43(5):1235-1253. PubMed ID: 31422572 [TBL] [Abstract][Full Text] [Related]
19. Artificial Intelligence and Arthroplasty at a Single Institution: Real-World Applications of Machine Learning to Big Data, Value-Based Care, Mobile Health, and Remote Patient Monitoring. Ramkumar PN; Haeberle HS; Bloomfield MR; Schaffer JL; Kamath AF; Patterson BM; Krebs VE J Arthroplasty; 2019 Oct; 34(10):2204-2209. PubMed ID: 31280916 [TBL] [Abstract][Full Text] [Related]
20. The evolution of boosting algorithms. From machine learning to statistical modelling. Mayr A; Binder H; Gefeller O; Schmid M Methods Inf Med; 2014; 53(6):419-27. PubMed ID: 25112367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]