These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33812583)

  • 1. Development of collagen/nanohydroxyapatite scaffolds containing plant extract intended for bone regeneration.
    Garcia CF; Marangon CA; Massimino LC; Klingbeil MFG; Martins VCA; Plepis AMG
    Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111955. PubMed ID: 33812583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Content-Dependent Osteogenic Response of Nanohydroxyapatite: An in Vitro and in Vivo Assessment within Collagen-Based Scaffolds.
    Cunniffe GM; Curtin CM; Thompson EM; Dickson GR; O'Brien FJ
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23477-88. PubMed ID: 27537605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations.
    El-Fiqi A; Kim JH; Kim HW
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of collagen-nanohydroxyapatite biocomposite scaffolds by cryogelation method for bone tissue engineering applications.
    Rodrigues SC; Salgado CL; Sahu A; Garcia MP; Fernandes MH; Monteiro FJ
    J Biomed Mater Res A; 2013 Apr; 101(4):1080-94. PubMed ID: 23008173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering.
    Lowe B; Venkatesan J; Anil S; Shim MS; Kim SK
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1479-1487. PubMed ID: 26921504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering.
    Boissard CI; Bourban PE; Tami AE; Alini M; Eglin D
    Acta Biomater; 2009 Nov; 5(9):3316-27. PubMed ID: 19442765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Healing potential of nanohydroxyapatite, gelatin, and fibrin-platelet glue combination as tissue engineered scaffolds in radial bone defects of rats.
    Meimandi-Parizi A; Oryan A; Gholipour H
    Connect Tissue Res; 2018 Jul; 59(4):332-344. PubMed ID: 29035127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value.
    Shahrezaie M; Moshiri A; Shekarchi B; Oryan A; Maffulli N; Parvizi J
    J Tissue Eng Regen Med; 2018 Apr; 12(4):936-960. PubMed ID: 28714236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of novel polyhydroxybutyrate-keratin/nanohydroxyapatite electrospun fibers for bone tissue engineering applications.
    Sarrami P; Karbasi S; Farahbakhsh Z; Bigham A; Rafienia M
    Int J Biol Macromol; 2022 Nov; 220():1368-1389. PubMed ID: 36116596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies.
    Wu H; Lei P; Liu G; Shrike Zhang Y; Yang J; Zhang L; Xie J; Niu W; Liu H; Ruan J; Hu Y; Zhang C
    Sci Rep; 2017 Mar; 7(1):359. PubMed ID: 28337023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration.
    Martin V; Ribeiro IA; Alves MM; Gonçalves L; Claudio RA; Grenho L; Fernandes MH; Gomes P; Santos CF; Bettencourt AF
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():15-26. PubMed ID: 31029308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration.
    Uswatta SP; Okeke IU; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion.
    Zhang Z; Wu G; Cao Y; Liu C; Jin Y; Wang Y; Yang L; Guo J; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():445-454. PubMed ID: 30274077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pore size in bone regeneration using polydopamine-laced hydroxyapatite collagen calcium silicate scaffolds fabricated by 3D mould printing technology.
    Lee DJ; Kwon J; Kim YI; Wang X; Wu TJ; Lee YT; Kim S; Miguez P; Ko CC
    Orthod Craniofac Res; 2019 May; 22 Suppl 1(Suppl 1):127-133. PubMed ID: 31074145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient-Derived Human Induced Pluripotent Stem Cells From Gingival Fibroblasts Composited With Defined Nanohydroxyapatite/Chitosan/Gelatin Porous Scaffolds as Potential Bone Graft Substitutes.
    Ji J; Tong X; Huang X; Zhang J; Qin H; Hu Q
    Stem Cells Transl Med; 2016 Jan; 5(1):95-105. PubMed ID: 26586776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of scaffold design optimization in bone tissue engineering: finite element modeling versus designed experiments.
    Uth N; Mueller J; Smucker B; Yousefi AM
    Biofabrication; 2017 Feb; 9(1):015023. PubMed ID: 28222045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration.
    Diaz-Gomez L; García-González CA; Wang J; Yang F; Aznar-Cervantes S; Cenis JL; Reyes R; Delgado A; Évora C; Concheiro A; Alvarez-Lorenzo C
    Int J Pharm; 2017 Jul; 527(1-2):115-125. PubMed ID: 28539234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Characterization of Collagen Scaffolds Reinforced by Eggshell Derived Hydroxyapatite for Tissue Engineering.
    Padmanabhan SK; Salvatore L; Gervaso F; Catalano M; Taurino A; Sannino A; Licciulli A
    J Nanosci Nanotechnol; 2015 Jan; 15(1):504-9. PubMed ID: 26328390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.