These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 33812663)

  • 1. Flexible Fungal Materials: Shaping the Future.
    Gandia A; van den Brandhof JG; Appels FVW; Jones MP
    Trends Biotechnol; 2021 Dec; 39(12):1321-1331. PubMed ID: 33812663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waste-Derived Low-Cost Mycelium Nanopapers with Tunable Mechanical and Surface Properties.
    Jones M; Weiland K; Kujundzic M; Theiner J; Kählig H; Kontturi E; John S; Bismarck A; Mautner A
    Biomacromolecules; 2019 Sep; 20(9):3513-3523. PubMed ID: 31355634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative chitin-glucan based material obtained from mycelium of wood decay fungal strains.
    Vadivel D; Cartabia M; Scalet G; Buratti S; Di Landro L; Benedetti A; Auricchio F; Babbini S; Savino E; Dondi D
    Heliyon; 2024 Apr; 10(7):e28709. PubMed ID: 38590850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Nature to Design: Tailoring Pure Mycelial Materials for the Needs of Tomorrow.
    Whabi V; Yu B; Xu J
    J Fungi (Basel); 2024 Feb; 10(3):. PubMed ID: 38535193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungi as source for new bio-based materials: a patent review.
    Cerimi K; Akkaya KC; Pohl C; Schmidt B; Neubauer P
    Fungal Biol Biotechnol; 2019; 6():17. PubMed ID: 31673396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Fungal Foams from Edible Mushrooms Using Different Agricultural Wastes as Substrates for Packaging Material.
    Majib NM; Sam ST; Yaacob ND; Rohaizad NM; Tan WK
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent production of chitin from shrimp shells and fungi.
    Teng WL; Khor E; Tan TK; Lim LY; Tan SC
    Carbohydr Res; 2001 Jun; 332(3):305-16. PubMed ID: 11376610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current state and future prospects of pure mycelium materials.
    Vandelook S; Elsacker E; Van Wylick A; De Laet L; Peeters E
    Fungal Biol Biotechnol; 2021 Dec; 8(1):20. PubMed ID: 34930476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent technological innovations in mycelium materials as leather substitutes: a patent review.
    Elsacker E; Vandelook S; Peeters E
    Front Bioeng Biotechnol; 2023; 11():1204861. PubMed ID: 37609120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feeding on fungi: genomic and proteomic analysis of the enzymatic machinery of bacteria decomposing fungal biomass.
    Starke R; Morais D; Větrovský T; López Mondéjar R; Baldrian P; Brabcová V
    Environ Microbiol; 2020 Nov; 22(11):4604-4619. PubMed ID: 32743948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface properties of chitin-glucan nanopapers from Agaricus bisporus.
    Nawawi WMFW; Lee KY; Kontturi E; Bismarck A; Mautner A
    Int J Biol Macromol; 2020 Apr; 148():677-687. PubMed ID: 31954796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Engineered Composites Biofabrication Using Fungi.
    Zhang M; Zhao X; Bai M; Xue J; Liu R; Huang Y; Wang M; Cao J
    Small; 2024 Jun; 20(25):e2309171. PubMed ID: 38196296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fungal lysis by a soil bacterium fermenting cellulose.
    Tolonen AC; Cerisy T; El-Sayyed H; Boutard M; Salanoubat M; Church GM
    Environ Microbiol; 2015 Aug; 17(8):2618-27. PubMed ID: 24798076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.
    Mondala AH
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):487-506. PubMed ID: 25557737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of Chitinaceous Wastes for the Production of Chitinase.
    Das S; Roy D; Sen R
    Adv Food Nutr Res; 2016; 78():27-46. PubMed ID: 27452164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Better One-Eyed than Blind--Challenges and Opportunities of Biomass Measurement During Solid-State Fermentation of Basidiomycetes.
    Steudler S; Bley T
    Adv Biochem Eng Biotechnol; 2015; 149():223-52. PubMed ID: 25860889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of chitin-glucan complex from Tremella fuciformis fermentation residue and evaluation of its antibacterial performance.
    Chen A; Pan F; Zhang T; Yu C; Xiao Y; Li S; Xu H; Xu X; Han M; Xu Z
    Int J Biol Macromol; 2021 Sep; 186():649-655. PubMed ID: 34118291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A PCR-based method to quantify fungal growth during pretreatment of lignocellulosic biomass.
    Simeng Z; Sacha G; Isabelle HG; Marie-Noëlle R
    J Microbiol Methods; 2015 Aug; 115():67-70. PubMed ID: 26031470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. State of the art, recent advances, and challenges in the field of fungal mycelium materials: a snapshot of the 2021 Mini Meeting.
    Attias N; Livne A; Abitbol T
    Fungal Biol Biotechnol; 2021 Nov; 8(1):12. PubMed ID: 34758884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A sustainable biorefinery to convert agricultural residues into value-added chemicals.
    Liu Z; Liao W; Liu Y
    Biotechnol Biofuels; 2016; 9():197. PubMed ID: 27660652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.