These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 33812745)
1. Enhanced performance of microbial fuel cells with enriched ferrous iron oxidation microflora at room temperatures. Zhang G; Wang X; Jiao Y; Chen Q; Lee DJ Bioresour Technol; 2021 Jul; 331():125025. PubMed ID: 33812745 [TBL] [Abstract][Full Text] [Related]
2. Microbial fuel cell operation with continuous biological ferrous iron oxidation of the catholyte. Ter Heijne A; Hamelers HV; Buisman CJ Environ Sci Technol; 2007 Jun; 41(11):4130-4. PubMed ID: 17612201 [TBL] [Abstract][Full Text] [Related]
3. Ferrous iron oxidation microflora from rust deposits improve the performance of bioelectrochemical system. Wang X; Zhang G; Jiao Y; Zhang Q; Chang JS; Lee DJ Bioresour Technol; 2022 Nov; 364():128048. PubMed ID: 36191749 [TBL] [Abstract][Full Text] [Related]
4. Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans. Yang Y; Chen S; Wang B; Wen X; Li H; Zeng RJ Sci Total Environ; 2020 Mar; 710():136334. PubMed ID: 32050370 [TBL] [Abstract][Full Text] [Related]
5. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Ter Heijne A; Hamelers HV; De Wilde V; Rozendal RA; Buisman CJ Environ Sci Technol; 2006 Sep; 40(17):5200-5. PubMed ID: 16999089 [TBL] [Abstract][Full Text] [Related]
6. A triple-chamber microbial fuel cell enabled to synchronously recover iron and sulfur elements from sulfide tailings. Zheng Y; Wang L; Zhu Y; Li X; Ren Y J Hazard Mater; 2021 Jan; 401():123307. PubMed ID: 32653783 [TBL] [Abstract][Full Text] [Related]
7. Effect of Fe-chelating complexes on a novel M2FC performance with ferric chloride and ferricyanide catholytes. Chung K; Lee I; Han JI Chemosphere; 2012 Jan; 86(4):415-9. PubMed ID: 22018860 [TBL] [Abstract][Full Text] [Related]
8. The coupling reaction of Fe Song Y; Yang L; Wang H; Sun X; Bai S; Wang N; Liang J; Zhou L Environ Technol; 2021 Jun; 42(15):2325-2334. PubMed ID: 31797752 [TBL] [Abstract][Full Text] [Related]
9. Acidophilic microorganisms enhancing geochemical dynamics in an acidic drainage system, Amarillo river in La Rioja, Argentina. Bernardelli CE; Maza SN; Lecomte KL; Collo G; Astini RA; Donati ER Chemosphere; 2021 Jan; 263():128098. PubMed ID: 33297094 [TBL] [Abstract][Full Text] [Related]
10. A lithotrophic microbial fuel cell operated with pseudomonads-dominated iron-oxidizing bacteria enriched at the anode. Nguyen TT; Luong TT; Tran PH; Bui HT; Nguyen HQ; Dinh HT; Kim BH; Pham HT Microb Biotechnol; 2015 May; 8(3):579-89. PubMed ID: 25712332 [TBL] [Abstract][Full Text] [Related]
11. Possibility of using a lithotrophic iron-oxidizing microbial fuel cell as a biosensor for detecting iron and manganese in water samples. Tran PH; Luong TT; Nguyen TT; Nguyen HQ; Duong HV; Kim BH; Pham HT Environ Sci Process Impacts; 2015 Oct; 17(10):1806-15. PubMed ID: 26343878 [TBL] [Abstract][Full Text] [Related]
12. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells. Liu Q; Yang Y; Mei X; Liu B; Chen C; Xing D Sci Total Environ; 2018 Aug; 631-632():695-701. PubMed ID: 29539598 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and properties of ternary (K, NH₄, H₃O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions. Jones FS; Bigham JM; Gramp JP; Tuovinen OH Mater Sci Eng C Mater Biol Appl; 2014 Nov; 44():391-9. PubMed ID: 25280720 [TBL] [Abstract][Full Text] [Related]
14. Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells. Chang CC; Li SL; Hu A; Yu CP Chemosphere; 2021 Mar; 266():129059. PubMed ID: 33250234 [TBL] [Abstract][Full Text] [Related]
15. Assessment of the induced effect of selected iron hydroxysulfates biosynthesized using Acidithiobacillus ferrooxidans for biomineralization of acid mine drainage. Wang H; Guo Q; Guo Z; Luo H; Li H; Yang J; Song Y Water Sci Technol; 2023 Apr; 87(8):1879-1892. PubMed ID: 37119161 [TBL] [Abstract][Full Text] [Related]
16. Isolation and characterization of ferrous- and sulfur-oxidizing bacteria from Tengchong solfataric region, China. Jiang C; Liu Y; Liu Y; Guo X; Liu SJ J Environ Sci (China); 2009; 21(9):1247-52. PubMed ID: 19999973 [TBL] [Abstract][Full Text] [Related]
17. Bioelectricity production from wastewater treatment in dual chambered microbial fuel cell (MFC) using selectively enriched mixed microflora: Effect of catholyte. Venkata Mohan S; Saravanan R; Raghavulu SV; Mohanakrishna G; Sarma PN Bioresour Technol; 2008 Feb; 99(3):596-603. PubMed ID: 17321135 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Microbial Oxidation-Neutralization Treatment of Acid Mine Drainage Rich in Ferrous Ions (Fe He W; Li H; Xu Y; Zhong F; Dong H; Wang M Int J Environ Res Public Health; 2022 May; 19(11):. PubMed ID: 35682127 [TBL] [Abstract][Full Text] [Related]
19. Regeneration of Fe Liu Q; Yu K; Yi P; Cao W; Chen X; Zhang X Environ Sci Pollut Res Int; 2019 Jul; 26(19):19540-19548. PubMed ID: 31077045 [TBL] [Abstract][Full Text] [Related]
20. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Wu D; Xing D; Lu L; Wei M; Liu B; Ren N Bioresour Technol; 2013 May; 135():630-4. PubMed ID: 23127834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]