These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
698 related articles for article (PubMed ID: 33813880)
1. Genetically increasing flux through β-oxidation in skeletal muscle increases mitochondrial reductive stress and glucose intolerance. Smith CD; Lin CT; McMillin SL; Weyrauch LA; Schmidt CA; Smith CA; Kurland IJ; Witczak CA; Neufer PD Am J Physiol Endocrinol Metab; 2021 May; 320(5):E938-E950. PubMed ID: 33813880 [TBL] [Abstract][Full Text] [Related]
2. The C57BL/6J Niemann-Pick C1 mouse model with decreased gene dosage has impaired glucose tolerance independent of body weight. Jelinek D; Castillo JJ; Garver WS Gene; 2013 Sep; 527(1):65-70. PubMed ID: 23769925 [TBL] [Abstract][Full Text] [Related]
3. Flux through mitochondrial redox circuits linked to nicotinamide nucleotide transhydrogenase generates counterbalance changes in energy expenditure. Smith CD; Schmidt CA; Lin CT; Fisher-Wellman KH; Neufer PD J Biol Chem; 2020 Nov; 295(48):16207-16216. PubMed ID: 32747443 [TBL] [Abstract][Full Text] [Related]
4. A potential link between muscle peroxisome proliferator- activated receptor-alpha signaling and obesity-related diabetes. Finck BN; Bernal-Mizrachi C; Han DH; Coleman T; Sambandam N; LaRiviere LL; Holloszy JO; Semenkovich CF; Kelly DP Cell Metab; 2005 Feb; 1(2):133-44. PubMed ID: 16054054 [TBL] [Abstract][Full Text] [Related]
5. Paradoxical effects of increased expression of PGC-1alpha on muscle mitochondrial function and insulin-stimulated muscle glucose metabolism. Choi CS; Befroy DE; Codella R; Kim S; Reznick RM; Hwang YJ; Liu ZX; Lee HY; Distefano A; Samuel VT; Zhang D; Cline GW; Handschin C; Lin J; Petersen KF; Spiegelman BM; Shulman GI Proc Natl Acad Sci U S A; 2008 Dec; 105(50):19926-31. PubMed ID: 19066218 [TBL] [Abstract][Full Text] [Related]
6. Induced Cre-mediated knockdown of Brca1 in skeletal muscle reduces mitochondrial respiration and prevents glucose intolerance in adult mice on a high-fat diet. Jackson KC; Tarpey MD; Valencia AP; Iñigo MR; Pratt SJ; Patteson DJ; McClung JM; Lovering RM; Thomson DM; Spangenburg EE FASEB J; 2018 Jun; 32(6):3070-3084. PubMed ID: 29401626 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. Anderson EJ; Lustig ME; Boyle KE; Woodlief TL; Kane DA; Lin CT; Price JW; Kang L; Rabinovitch PS; Szeto HH; Houmard JA; Cortright RN; Wasserman DH; Neufer PD J Clin Invest; 2009 Mar; 119(3):573-81. PubMed ID: 19188683 [TBL] [Abstract][Full Text] [Related]
8. alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice. Wang Y; Li X; Guo Y; Chan L; Guan X Metabolism; 2010 Jul; 59(7):967-76. PubMed ID: 20015518 [TBL] [Abstract][Full Text] [Related]
9. Decreased Metabolic Flexibility in Skeletal Muscle of Rat Fed with a High-Fat Diet Is Recovered by Individual CLA Isomer Supplementation via Converging Protective Mechanisms. Trinchese G; Cavaliere G; Cimmino F; Catapano A; Carta G; Pirozzi C; Murru E; Lama A; Meli R; Bergamo P; Banni S; Mollica MP Cells; 2020 Mar; 9(4):. PubMed ID: 32235294 [TBL] [Abstract][Full Text] [Related]
10. Influence of fish oil on skeletal muscle mitochondrial energetics and lipid metabolites during high-fat diet. Lanza IR; Blachnio-Zabielska A; Johnson ML; Schimke JM; Jakaitis DR; Lebrasseur NK; Jensen MD; Sreekumaran Nair K; Zabielski P Am J Physiol Endocrinol Metab; 2013 Jun; 304(12):E1391-403. PubMed ID: 23632634 [TBL] [Abstract][Full Text] [Related]
11. Early mitochondrial adaptations in skeletal muscle to diet-induced obesity are strain dependent and determine oxidative stress and energy expenditure but not insulin sensitivity. Boudina S; Sena S; Sloan C; Tebbi A; Han YH; O'Neill BT; Cooksey RC; Jones D; Holland WL; McClain DA; Abel ED Endocrinology; 2012 Jun; 153(6):2677-88. PubMed ID: 22510273 [TBL] [Abstract][Full Text] [Related]
12. G(s)alpha deficiency in skeletal muscle leads to reduced muscle mass, fiber-type switching, and glucose intolerance without insulin resistance or deficiency. Chen M; Feng HZ; Gupta D; Kelleher J; Dickerson KE; Wang J; Hunt D; Jou W; Gavrilova O; Jin JP; Weinstein LS Am J Physiol Cell Physiol; 2009 Apr; 296(4):C930-40. PubMed ID: 19158402 [TBL] [Abstract][Full Text] [Related]
13. PPARα-ATGL pathway improves muscle mitochondrial metabolism: implication in aging. Biswas D; Ghosh M; Kumar S; Chakrabarti P FASEB J; 2016 Nov; 30(11):3822-3834. PubMed ID: 27485820 [TBL] [Abstract][Full Text] [Related]
14. P38α MAPK Coordinates Mitochondrial Adaptation to Caloric Surplus in Skeletal Muscle. Waingerten-Kedem L; Aviram S; Blau A; Hayek T; Bengal E Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063031 [TBL] [Abstract][Full Text] [Related]
15. The Effect of Aerobic Exercise on the Oxidative Capacity of Skeletal Muscle Mitochondria in Mice with Impaired Glucose Tolerance. Wang D; Jiang DM; Yu RR; Zhang LL; Liu YZ; Chen JX; Chen HC; Liu YP J Diabetes Res; 2022; 2022():3780156. PubMed ID: 35712028 [TBL] [Abstract][Full Text] [Related]
16. Adipose triglyceride lipase-null mice are resistant to high-fat diet-induced insulin resistance despite reduced energy expenditure and ectopic lipid accumulation. Hoy AJ; Bruce CR; Turpin SM; Morris AJ; Febbraio MA; Watt MJ Endocrinology; 2011 Jan; 152(1):48-58. PubMed ID: 21106876 [TBL] [Abstract][Full Text] [Related]
17. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice. Zabielski P; Lanza IR; Gopala S; Heppelmann CJ; Bergen HR; Dasari S; Nair KS Diabetes; 2016 Mar; 65(3):561-73. PubMed ID: 26718503 [TBL] [Abstract][Full Text] [Related]
18. Estrogen-related receptor alpha directs peroxisome proliferator-activated receptor alpha signaling in the transcriptional control of energy metabolism in cardiac and skeletal muscle. Huss JM; Torra IP; Staels B; Giguère V; Kelly DP Mol Cell Biol; 2004 Oct; 24(20):9079-91. PubMed ID: 15456881 [TBL] [Abstract][Full Text] [Related]
19. Increasing skeletal muscle fatty acid transport protein 1 (FATP1) targets fatty acids to oxidation and does not predispose mice to diet-induced insulin resistance. Holloway GP; Chou CJ; Lally J; Stellingwerff T; Maher AC; Gavrilova O; Haluzik M; Alkhateeb H; Reitman ML; Bonen A Diabetologia; 2011 Jun; 54(6):1457-67. PubMed ID: 21442160 [TBL] [Abstract][Full Text] [Related]
20. Sustained activation of PPARα by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. Huang J; Jia Y; Fu T; Viswakarma N; Bai L; Rao MS; Zhu Y; Borensztajn J; Reddy JK FASEB J; 2012 Feb; 26(2):628-38. PubMed ID: 22009939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]