BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33814345)

  • 1. The muscle-relaxing C-terminal peptide from troponin I populates a nascent helix, facilitating binding to tropomyosin with a potent therapeutic effect.
    Hornos F; Feng HZ; Rizzuti B; Palomino-Schätzlein M; Wieczorek D; Neira JL; Jin JP
    J Biol Chem; 2021; 296():100228. PubMed ID: 33814345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolutionarily conserved C-terminal peptide of troponin I is an independently configured regulatory structure to function as a myofilament Ca
    Wong S; Feng HZ; Jin JP
    J Mol Cell Cardiol; 2019 Nov; 136():42-52. PubMed ID: 31505197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mutation in the N-terminus of troponin I that is associated with hypertrophic cardiomyopathy affects the Ca(2+)-sensitivity, phosphorylation kinetics and proteolytic susceptibility of troponin.
    Gomes AV; Harada K; Potter JD
    J Mol Cell Cardiol; 2005 Nov; 39(5):754-65. PubMed ID: 16005017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of a troponin I (R145G) mutation associated with familial hypertrophic cardiomyopathy.
    Lang R; Gomes AV; Zhao J; Housmans PR; Miller T; Potter JD
    J Biol Chem; 2002 Apr; 277(14):11670-8. PubMed ID: 11801593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-terminal troponin-I residues trap tropomyosin in the muscle thin filament blocked-state.
    Lehman W; Pavadai E; Rynkiewicz MJ
    Biochem Biophys Res Commun; 2021 Apr; 551():27-32. PubMed ID: 33714756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-regulated conformational change in the C-terminal end segment of troponin I and its binding to tropomyosin.
    Zhang Z; Akhter S; Mottl S; Jin JP
    FEBS J; 2011 Sep; 278(18):3348-59. PubMed ID: 21777381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lys184 deletion in troponin I impairs relaxation kinetics and induces hypercontractility in murine cardiac myofibrils.
    Iorga B; Blaudeck N; Solzin J; Neulen A; Stehle I; Lopez Davila AJ; Pfitzer G; Stehle R
    Cardiovasc Res; 2008 Mar; 77(4):676-86. PubMed ID: 18096573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desensitization of myofilaments to Ca2+ as a therapeutic target for hypertrophic cardiomyopathy with mutations in thin filament proteins.
    Alves ML; Dias FAL; Gaffin RD; Simon JN; Montminy EM; Biesiadecki BJ; Hinken AC; Warren CM; Utter MS; Davis RT; Sakthivel S; Robbins J; Wieczorek DF; Solaro RJ; Wolska BM
    Circ Cardiovasc Genet; 2014 Apr; 7(2):132-143. PubMed ID: 24585742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in the dynamics of the cardiac troponin C molecule explain the effects of Ca
    Stevens CM; Rayani K; Singh G; Lotfalisalmasi B; Tieleman DP; Tibbits GF
    J Biol Chem; 2017 Jul; 292(28):11915-11926. PubMed ID: 28533433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional consequences of the mutations in human cardiac troponin I gene found in familial hypertrophic cardiomyopathy.
    Takahashi-Yanaga F; Morimoto S; Harada K; Minakami R; Shiraishi F; Ohta M; Lu QW; Sasaguri T; Ohtsuki I
    J Mol Cell Cardiol; 2001 Dec; 33(12):2095-107. PubMed ID: 11735257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional studies on Troponin I and Troponin C interactions.
    Ngai SM; Pearlstone JR; Farah CS; Reinach FC; Smillie LB; Hodges RS
    J Cell Biochem; 2001 Jun 26-Jul 25; 83(1):33-46. PubMed ID: 11500952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of the human cardiac troponin I hypertrophic cardiomyopathy mutation R145G in transgenic mice.
    Wen Y; Pinto JR; Gomes AV; Xu Y; Wang Y; Wang Y; Potter JD; Kerrick WG
    J Biol Chem; 2008 Jul; 283(29):20484-94. PubMed ID: 18430738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Relaxation Properties of Myofibrils Are Compromised by Amino Acids that Stabilize α-Tropomyosin.
    Scellini B; Piroddi N; Matyushenko AM; Levitsky DI; Poggesi C; Lehrer SS; Tesi C
    Biophys J; 2017 Jan; 112(2):376-387. PubMed ID: 28122223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic mapping of regions of human cardiac troponin I involved in binding to cardiac troponin C: N- and C-terminal low affinity contributing regions.
    Ferrières G; Pugnière M; Mani JC; Villard S; Laprade M; Doutre P; Pau B; Granier C
    FEBS Lett; 2000 Aug; 479(3):99-105. PubMed ID: 10981715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+-dependent photocrosslinking of tropomyosin residue 146 to residues 157-163 in the C-terminal domain of troponin I in reconstituted skeletal muscle thin filaments.
    Mudalige WA; Tao TC; Lehrer SS
    J Mol Biol; 2009 Jun; 389(3):575-83. PubMed ID: 19379756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced troponin I binding explains the functional changes produced by the hypertrophic cardiomyopathy mutation A8V of cardiac troponin C.
    Zot HG; Hasbun JE; Michell CA; Landim-Vieira M; Pinto JR
    Arch Biochem Biophys; 2016 Jul; 601():97-104. PubMed ID: 26976709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the NH(2)- and COOH-terminal domains of the inhibitory region of troponin I in the regulation of skeletal muscle contraction.
    Szczesna D; Zhang R; Zhao J; Jones M; Potter JD
    J Biol Chem; 1999 Oct; 274(41):29536-42. PubMed ID: 10506219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypertrophic cardiomyopathy mutations increase myofilament Ca
    Robinson P; Liu X; Sparrow A; Patel S; Zhang YH; Casadei B; Watkins H; Redwood C
    J Biol Chem; 2018 Jul; 293(27):10487-10499. PubMed ID: 29760186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Restrictive cardiomyopathy mutations demonstrate functions of the C-terminal end-segment of troponin I.
    Akhter S; Bueltmann K; Huang X; Jin JP
    Arch Biochem Biophys; 2014 Jun; 552-553():3-10. PubMed ID: 24326031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of the mutation R145G in human cardiac troponin I on the kinetics of the contraction-relaxation cycle in isolated cardiac myofibrils.
    Kruger M; Zittrich S; Redwood C; Blaudeck N; James J; Robbins J; Pfitzer G; Stehle R
    J Physiol; 2005 Apr; 564(Pt 2):347-57. PubMed ID: 15718266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.