These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 33814476)
21. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial. Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007 [TBL] [Abstract][Full Text] [Related]
22. Effect of assist-as-needed robotic gait training on the gait pattern post stroke: a randomized controlled trial. Alingh JF; Fleerkotte BM; Groen BE; Rietman JS; Weerdesteyn V; van Asseldonk EHF; Geurts ACH; Buurke JH J Neuroeng Rehabil; 2021 Feb; 18(1):26. PubMed ID: 33546733 [TBL] [Abstract][Full Text] [Related]
23. Gait training early after stroke with a new exoskeleton--the hybrid assistive limb: a study of safety and feasibility. Nilsson A; Vreede KS; Häglund V; Kawamoto H; Sankai Y; Borg J J Neuroeng Rehabil; 2014 Jun; 11():92. PubMed ID: 24890413 [TBL] [Abstract][Full Text] [Related]
24. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury. Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463 [No Abstract] [Full Text] [Related]
25. Task-specific training for improving propulsion symmetry and gait speed in people in the chronic phase after stroke: a proof-of-concept study. Alingh JF; Groen BE; Kamphuis JF; Geurts ACH; Weerdesteyn V J Neuroeng Rehabil; 2021 Apr; 18(1):69. PubMed ID: 33892754 [TBL] [Abstract][Full Text] [Related]
26. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study. Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284 [TBL] [Abstract][Full Text] [Related]
27. Hemorrhagic versus ischemic stroke: Who can best benefit from blended conventional physiotherapy with robotic-assisted gait therapy? Dierick F; Dehas M; Isambert JL; Injeyan S; Bouché AF; Bleyenheuft Y; Portnoy S PLoS One; 2017; 12(6):e0178636. PubMed ID: 28575054 [TBL] [Abstract][Full Text] [Related]
28. Who may benefit from robotic-assisted gait training? A randomized clinical trial in patients with subacute stroke. Morone G; Bragoni M; Iosa M; De Angelis D; Venturiero V; Coiro P; Pratesi L; Paolucci S Neurorehabil Neural Repair; 2011 Sep; 25(7):636-44. PubMed ID: 21444654 [TBL] [Abstract][Full Text] [Related]
29. Effects of gait training using the Hybrid Assistive Limb® in recovery-phase stroke patients: A 2-month follow-up, randomized, controlled study. Watanabe H; Goto R; Tanaka N; Matsumura A; Yanagi H NeuroRehabilitation; 2017; 40(3):363-367. PubMed ID: 28222558 [TBL] [Abstract][Full Text] [Related]
30. Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial. Morone G; Annicchiarico R; Iosa M; Federici A; Paolucci S; Cortés U; Caltagirone C J Neuroeng Rehabil; 2016 May; 13(1):47. PubMed ID: 27225043 [TBL] [Abstract][Full Text] [Related]
31. Enhanced Rehabilitation Outcomes of Robotic-Assisted Gait Training with EksoNR Lower Extremity Exoskeleton in 19 Stroke Patients. Wiśniowska-Szurlej A; Wołoszyn N; Brożonowicz J; Ciąpała G; Pietryka K; Grzegorczyk J; Leszczak J; Ćwirlej-Sozańska A; Sozański B; Korczowski B Med Sci Monit; 2023 Jul; 29():e940511. PubMed ID: 37452491 [TBL] [Abstract][Full Text] [Related]
32. Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: a randomized controlled trial. Singh N; Saini M; Kumar N; Srivastava MVP; Mehndiratta A J Neuroeng Rehabil; 2021 May; 18(1):76. PubMed ID: 33957937 [TBL] [Abstract][Full Text] [Related]
33. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
34. Effect of overground gait training with 'Mobility Assisted Robotic System-MARS' on gait parameters in patients with stroke: a pre-post study. Gupta A; Prakash NB; Sannyasi G; Mohamad F; Honavar P; Jotheeswaran S; Khanna M; Ramakrishnan S BMC Neurol; 2023 Aug; 23(1):296. PubMed ID: 37558991 [TBL] [Abstract][Full Text] [Related]
35. Feasibility and outcomes of supplemental gait training by robotic and conventional means in acute stroke rehabilitation. Talaty M; Esquenazi A J Neuroeng Rehabil; 2023 Oct; 20(1):134. PubMed ID: 37794474 [TBL] [Abstract][Full Text] [Related]
36. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Watanabe H; Tanaka N; Inuta T; Saitou H; Yanagi H Arch Phys Med Rehabil; 2014 Nov; 95(11):2006-12. PubMed ID: 25010538 [TBL] [Abstract][Full Text] [Related]
37. Safety & efficacy of a robotic hip exoskeleton on outpatient stroke rehabilitation. Macaluso R; Giffhorn M; Prokup S; Cleland B; Lee J; Lim B; Lee M; Lee HJ; Madhavan S; Jayaraman A J Neuroeng Rehabil; 2024 Jul; 21(1):127. PubMed ID: 39080666 [TBL] [Abstract][Full Text] [Related]
38. Gait training with a robotic leg brace after stroke: a randomized controlled pilot study. Stein J; Bishop L; Stein DJ; Wong CK Am J Phys Med Rehabil; 2014 Nov; 93(11):987-94. PubMed ID: 24901757 [TBL] [Abstract][Full Text] [Related]
39. Lokomat: a therapeutic chance for patients with chronic hemiplegia. Uçar DE; Paker N; Buğdaycı D NeuroRehabilitation; 2014; 34(3):447-53. PubMed ID: 24463231 [TBL] [Abstract][Full Text] [Related]