These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 33815084)

  • 1. Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI).
    Asgher U; Khan MJ; Asif Nizami MH; Khalil K; Ahmad R; Ayaz Y; Naseer N
    Front Neurorobot; 2021; 15():605751. PubMed ID: 33815084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Accuracy for Multiclass Mental Workload Detection Using Long Short-Term Memory for Brain-Computer Interface.
    Asgher U; Khalil K; Khan MJ; Ahmad R; Butt SI; Ayaz Y; Naseer N; Nazir S
    Front Neurosci; 2020; 14():584. PubMed ID: 32655353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring Mental Workload with EEG+fNIRS.
    Aghajani H; Garbey M; Omurtag A
    Front Hum Neurosci; 2017; 11():359. PubMed ID: 28769775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Unified Analytical Framework With Multiple fNIRS Features for Mental Workload Assessment in the Prefrontal Cortex.
    Lim LG; Ung WC; Chan YL; Lu CK; Sutoko S; Funane T; Kiguchi M; Tang TB
    IEEE Trans Neural Syst Rehabil Eng; 2020 Nov; 28(11):2367-2376. PubMed ID: 32986555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of a Portable Functional Near-Infrared Spectroscopy (fNIRS) System to Examine Team Experience During Crisis Event Management in Clinical Simulations.
    Xu J; Slagle JM; Banerjee A; Bracken B; Weinger MB
    Front Hum Neurosci; 2019; 13():85. PubMed ID: 30890926
    [No Abstract]   [Full Text] [Related]  

  • 6. An effective classification framework for brain-computer interface system design based on combining of fNIRS and EEG signals.
    Alhudhaif A
    PeerJ Comput Sci; 2021; 7():e537. PubMed ID: 34013040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unleashing the potential of fNIRS with machine learning: classification of fine anatomical movements to empower future brain-computer interface.
    Khan H; Khadka R; Sultan MS; Yazidi A; Ombao H; Mirtaheri P
    Front Hum Neurosci; 2024; 18():1354143. PubMed ID: 38435744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional near-infrared spectroscopy in the evaluation of urban rail transit drivers' mental workload under simulated driving conditions.
    Li LP; Liu ZG; Zhu HY; Zhu L; Huang YC
    Ergonomics; 2019 Mar; 62(3):406-419. PubMed ID: 30307379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining Optimal Feature-Combination for LDA Classification of Functional Near-Infrared Spectroscopy Signals in Brain-Computer Interface Application.
    Naseer N; Noori FM; Qureshi NK; Hong KS
    Front Hum Neurosci; 2016; 10():237. PubMed ID: 27252637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-Specific feature selection for near infrared spectroscopy based brain-computer interfaces.
    Aydin EA
    Comput Methods Programs Biomed; 2020 Oct; 195():105535. PubMed ID: 32534382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain-Based Binary Communication Using Spatiotemporal Features of fNIRS Responses.
    Nagels-Coune L; Benitez-Andonegui A; Reuter N; Lührs M; Goebel R; De Weerd P; Riecke L; Sorger B
    Front Hum Neurosci; 2020; 14():113. PubMed ID: 32351371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM.
    Mughal NE; Khan MJ; Khalil K; Javed K; Sajid H; Naseer N; Ghafoor U; Hong KS
    Front Neurorobot; 2022; 16():873239. PubMed ID: 36119719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. fNIRS-based Neurorobotic Interface for gait rehabilitation.
    Khan RA; Naseer N; Qureshi NK; Noori FM; Nazeer H; Khan MU
    J Neuroeng Rehabil; 2018 Feb; 15(1):7. PubMed ID: 29402310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI.
    Gulraiz A; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fNIRS-based brain-computer interfaces: a review.
    Naseer N; Hong KS
    Front Hum Neurosci; 2015; 9():3. PubMed ID: 25674060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. fNIRS-GANs: data augmentation using generative adversarial networks for classifying motor tasks from functional near-infrared spectroscopy.
    Nagasawa T; Sato T; Nambu I; Wada Y
    J Neural Eng; 2020 Feb; 17(1):016068. PubMed ID: 31945755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of Individual Finger Movements from Right Hand Using fNIRS Signals.
    Khan H; Noori FM; Yazidi A; Uddin MZ; Khan MNA; Mirtaheri P
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution.
    Trakoolwilaiwan T; Behboodi B; Lee J; Kim K; Choi JW
    Neurophotonics; 2018 Jan; 5(1):011008. PubMed ID: 28924568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.