These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33815349)

  • 1. Phylogenetic Distribution of Polysaccharide-Degrading Enzymes in Marine Bacteria.
    Sun ZZ; Ji BW; Zheng N; Wang M; Cao Y; Wan L; Li YS; Rong JC; He HL; Chen XL; Zhang YZ; Xie BB
    Front Microbiol; 2021; 12():658620. PubMed ID: 33815349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Genomics of Rumen
    Palevich N; Kelly WJ; Leahy SC; Denman S; Altermann E; Rakonjac J; Attwood GT
    Appl Environ Microbiol; 2019 Dec; 86(1):. PubMed ID: 31653790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancient acquisition of "alginate utilization loci" by human gut microbiota.
    Mathieu S; Touvrey-Loiodice M; Poulet L; Drouillard S; Vincentelli R; Henrissat B; Skjåk-Bræk G; Helbert W
    Sci Rep; 2018 May; 8(1):8075. PubMed ID: 29795267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marine-polysaccharide degrading enzymes: Status and prospects.
    Sun H; Gao L; Xue C; Mao X
    Compr Rev Food Sci Food Saf; 2020 Nov; 19(6):2767-2796. PubMed ID: 33337030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Distribution Patterns and Pangenomic Diversity of the Candidate Phylum "Latescibacteria" (WS3).
    Farag IF; Youssef NH; Elshahed MS
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of scallop hepatopancreatic extract provides insights into marine polysaccharide digestion.
    Lyu Q; Jiao W; Zhang K; Bao Z; Wang S; Liu W
    Sci Rep; 2016 Dec; 6():34866. PubMed ID: 27982037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metagenomes Reveal Global Distribution of Bacterial Steroid Catabolism in Natural, Engineered, and Host Environments.
    Holert J; Cardenas E; Bergstrand LH; Zaikova E; Hahn AS; Hallam SJ; Mohn WW
    mBio; 2018 Jan; 9(1):. PubMed ID: 29382738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptations of
    Koch H; Freese HM; Hahnke RL; Simon M; Wietz M
    Front Microbiol; 2019; 10():504. PubMed ID: 30936857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome Sequencing Reveals the Complex Polysaccharide-Degrading Ability of Novel Deep-Sea Bacterium
    Gao B; Jin M; Li L; Qu W; Zeng R
    Front Microbiol; 2017; 8():600. PubMed ID: 28443080
    [No Abstract]   [Full Text] [Related]  

  • 10. Polysaccharide-Degrading Enzymes From Marine Gastropods.
    Ojima T; Rahman MM; Kumagai Y; Nishiyama R; Narsico J; Inoue A
    Methods Enzymol; 2018; 605():457-497. PubMed ID: 29909835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of a novel marine Bacteroidetes with a rich repertoire of carbohydrate-active enzymes.
    Chen B; Liu G; Chen Q; Wang H; Liu L; Tang K
    Comput Struct Biotechnol J; 2024 Dec; 23():406-416. PubMed ID: 38235362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phylogenetic distribution of potential cellulases in bacteria.
    Berlemont R; Martiny AC
    Appl Environ Microbiol; 2013 Mar; 79(5):1545-54. PubMed ID: 23263967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complete genome sequence of Maribacter sp. T28, a polysaccharide-degrading marine flavobacteria.
    Zhan P; Tang K; Chen X; Yu L
    J Biotechnol; 2017 Oct; 259():1-5. PubMed ID: 28811216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Cultivable Surface Microbiota of the Brown Alga Ascophyllum nodosum is Enriched in Macroalgal-Polysaccharide-Degrading Bacteria.
    Martin M; Barbeyron T; Martin R; Portetelle D; Michel G; Vandenbol M
    Front Microbiol; 2015; 6():1487. PubMed ID: 26734000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unifying themes and distinct features of carbon and nitrogen assimilation by polysaccharide-degrading bacteria: a summary of four model systems.
    Gardner JG; Schreier HJ
    Appl Microbiol Biotechnol; 2021 Nov; 105(21-22):8109-8127. PubMed ID: 34611726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic potential for polysaccharide deconstruction in bacteria.
    Berlemont R; Martiny AC
    Appl Environ Microbiol; 2015 Feb; 81(4):1513-19. PubMed ID: 25527556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global Distribution of Carbohydrate Utilization Potential in the Prokaryotic Tree of Life.
    López-Mondéjar R; Tláskal V; da Rocha UN; Baldrian P
    mSystems; 2022 Dec; 7(6):e0082922. PubMed ID: 36413015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sweet spheres: succession and CAZyme expression of marine bacterial communities colonizing a mix of alginate and pectin particles.
    Bunse C; Koch H; Breider S; Simon M; Wietz M
    Environ Microbiol; 2021 Jun; 23(6):3130-3148. PubMed ID: 33876546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria.
    D'Souza G; Ebrahimi A; Stubbusch A; Daniels M; Keegstra J; Stocker R; Cordero O; Ackermann M
    ISME J; 2023 May; 17(5):703-711. PubMed ID: 36813911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean.
    Wang L; Wang W; Lai Q; Shao Z
    Environ Microbiol; 2010 May; 12(5):1230-42. PubMed ID: 20148932
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.