These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33815495)

  • 1. An Adaptive Heterogeneous Online Learning Ensemble Classifier for Nonstationary Environments.
    Museba T; Nelwamondo F; Ouahada K
    Comput Intell Neurosci; 2021; 2021():6669706. PubMed ID: 33815495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective ensemble-based online adaptive deep neural networks for streaming data with concept drift.
    Guo H; Zhang S; Wang W
    Neural Netw; 2021 Oct; 142():437-456. PubMed ID: 34273615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incremental learning of concept drift in nonstationary environments.
    Elwell R; Polikar R
    IEEE Trans Neural Netw; 2011 Oct; 22(10):1517-31. PubMed ID: 21824845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble.
    Sarnovsky M; Kolarik M
    PeerJ Comput Sci; 2021; 7():e459. PubMed ID: 33834113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolving Spiking Neural Networks for online learning over drifting data streams.
    Lobo JL; LaƱa I; Del Ser J; Bilbao MN; Kasabov N
    Neural Netw; 2018 Dec; 108():1-19. PubMed ID: 30130678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reacting to different types of concept drift: the Accuracy Updated Ensemble algorithm.
    Brzezinski D; Stefanowski J
    IEEE Trans Neural Netw Learn Syst; 2014 Jan; 25(1):81-94. PubMed ID: 24806646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ensemble learning method with GAN-based sampling and consistency check for anomaly detection of imbalanced data streams with concept drift.
    Liu Y; Wang S; Sui H; Zhu L
    PLoS One; 2024; 19(1):e0292140. PubMed ID: 38277426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Online Learning With Adaptive Rebalancing in Nonstationary Environments.
    Malialis K; Panayiotou CG; Polycarpou MM
    IEEE Trans Neural Netw Learn Syst; 2021 Oct; 32(10):4445-4459. PubMed ID: 32960769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concept Drift-Tolerant Transfer Learning in Dynamic Environments.
    Yang C; Cheung YM; Ding J; Tan KC
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3857-3871. PubMed ID: 33566771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse Instance-Weighting Ensemble Based on Region Drift Disagreement for Concept Drift Adaptation.
    Liu A; Lu J; Zhang G
    IEEE Trans Neural Netw Learn Syst; 2021 Jan; 32(1):293-307. PubMed ID: 32217484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive Chunk-Based Dynamic Weighted Majority for Imbalanced Data Streams With Concept Drift.
    Lu Y; Cheung YM; Yan Tang Y
    IEEE Trans Neural Netw Learn Syst; 2020 Aug; 31(8):2764-2778. PubMed ID: 31825880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiking Neural Networks and online learning: An overview and perspectives.
    Lobo JL; Del Ser J; Bifet A; Kasabov N
    Neural Netw; 2020 Jan; 121():88-100. PubMed ID: 31536902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. COMPOSE: A semisupervised learning framework for initially labeled nonstationary streaming data.
    Dyer KB; Capo R; Polikar R
    IEEE Trans Neural Netw Learn Syst; 2014 Jan; 25(1):12-26. PubMed ID: 24806641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolving Gradient Boost: A Pruning Scheme Based on Loss Improvement Ratio for Learning Under Concept Drift.
    Wang K; Lu J; Liu A; Zhang G; Xiong L
    IEEE Trans Cybern; 2023 Apr; 53(4):2110-2123. PubMed ID: 34613927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IWDA: Importance Weighting for Drift Adaptation in Streaming Supervised Learning Problems.
    Fedeli F; Metelli AM; Trovo F; Restelli M
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):6813-6823. PubMed ID: 37071516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of adaptive ensemble classifier for online sentiment analysis and opinion mining.
    Kumar S; Singh R; Khan MZ; Noorwali A
    PeerJ Comput Sci; 2021; 7():e660. PubMed ID: 34435102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Ensemble Selection for Imbalanced Data Streams With Concept Drift.
    Jiao B; Guo Y; Gong D; Chen Q
    IEEE Trans Neural Netw Learn Syst; 2022 Jun; PP():. PubMed ID: 35731763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dynamic ensemble framework for mining textual streams with class imbalance.
    Song G; Ye Y
    ScientificWorldJournal; 2014; 2014():497354. PubMed ID: 24982961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Classification Performance through an Advanced Ensemble Based Heterogeneous Extreme Learning Machines.
    Abuassba AOM; Zhang D; Luo X; Shaheryar A; Ali H
    Comput Intell Neurosci; 2017; 2017():3405463. PubMed ID: 28546808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Data Stream Ensemble Assisted Multifactorial Evolutionary Algorithm for Offline Data-Driven Dynamic Optimization.
    Yang C; Ding J; Jin Y; Chai T
    Evol Comput; 2023 Dec; 31(4):433-458. PubMed ID: 37155647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.