BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 33815664)

  • 1. The Role of Nanomaterials in Stroke Treatment: Targeting Oxidative Stress.
    Song G; Zhao M; Chen H; Lenahan C; Zhou X; Ou Y; He Y
    Oxid Med Cell Longev; 2021; 2021():8857486. PubMed ID: 33815664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of nanomaterials for scavenging reactive oxygen species in the treatment of central nervous system diseases.
    An Z; Yan J; Zhang Y; Pei R
    J Mater Chem B; 2020 Oct; 8(38):8748-8767. PubMed ID: 32869050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species-scavenging nanomaterials for the prevention and treatment of age-related diseases.
    Dai Y; Guo Y; Tang W; Chen D; Xue L; Chen Y; Guo Y; Wei S; Wu M; Dai J; Wang S
    J Nanobiotechnology; 2024 May; 22(1):252. PubMed ID: 38750509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic nanomaterials: Development of protein coated nanoceria as a potential antioxidative nano-agent for the effective scavenging of reactive oxygen species in vitro and in zebrafish model.
    Bhushan B; Nandhagopal S; Rajesh Kannan R; Gopinath P
    Colloids Surf B Biointerfaces; 2016 Oct; 146():375-86. PubMed ID: 27388966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application and design considerations of ROS-based nanomaterials in diabetic kidney disease.
    Huang Q; Tang J; Ding Y; Li F
    Front Endocrinol (Lausanne); 2024; 15():1351497. PubMed ID: 38742196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of Acupuncture in the Regulation of Oxidative Stress in Treating Ischemic Stroke.
    Su XT; Wang L; Ma SM; Cao Y; Yang NN; Lin LL; Fisher M; Yang JW; Liu CZ
    Oxid Med Cell Longev; 2020; 2020():7875396. PubMed ID: 33178387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities.
    Rodrigo R; Fernández-Gajardo R; Gutiérrez R; Matamala JM; Carrasco R; Miranda-Merchak A; Feuerhake W
    CNS Neurol Disord Drug Targets; 2013 Aug; 12(5):698-714. PubMed ID: 23469845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders.
    Akhtar MJ; Ahamed M; Alhadlaq HA; Alshamsan A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):802-813. PubMed ID: 28115205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions.
    Mahapatra C; Singh RK; Lee JH; Jung J; Hyun JK; Kim HW
    Acta Biomater; 2017 Mar; 50():142-153. PubMed ID: 27940193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encapsulation of tissue plasminogen activator in pH-sensitive self-assembled antioxidant nanoparticles for ischemic stroke treatment - Synergistic effect of thrombolysis and antioxidant.
    Mei T; Kim A; Vong LB; Marushima A; Puentes S; Matsumaru Y; Matsumura A; Nagasaki Y
    Biomaterials; 2019 Sep; 215():119209. PubMed ID: 31181394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress in the chronic phase after stroke.
    Alexandrova ML; Bochev PG; Markova VI; Bechev BG; Popova MA; Danovska MP; Simeonova VK
    Redox Rep; 2003; 8(3):169-76. PubMed ID: 12935315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nrf2-a Promising Therapeutic Target for Defensing Against Oxidative Stress in Stroke.
    Zhang R; Xu M; Wang Y; Xie F; Zhang G; Qin X
    Mol Neurobiol; 2017 Oct; 54(8):6006-6017. PubMed ID: 27696223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antioxidant therapy in acute central nervous system injury: current state.
    Gilgun-Sherki Y; Rosenbaum Z; Melamed E; Offen D
    Pharmacol Rev; 2002 Jun; 54(2):271-84. PubMed ID: 12037143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocarrier-mediated antioxidant delivery for liver diseases.
    Li S; Li H; Xu X; Saw PE; Zhang L
    Theranostics; 2020; 10(3):1262-1280. PubMed ID: 31938064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free radical scavengers and spin traps--therapeutic implications for ischemic stroke.
    Doeppner TR; Hermann DM
    Best Pract Res Clin Anaesthesiol; 2010 Dec; 24(4):511-20. PubMed ID: 21619863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbonaceous Nanomaterials-Mediated Defense Against Oxidative Stress.
    Forbot N; Bolibok P; Wiśniewski M; Roszek K
    Mini Rev Med Chem; 2020; 20(4):294-307. PubMed ID: 31738152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant responses to oxidant-mediated lung diseases.
    Comhair SA; Erzurum SC
    Am J Physiol Lung Cell Mol Physiol; 2002 Aug; 283(2):L246-55. PubMed ID: 12114185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative stress and its role in the pathogenesis of ischaemic stroke.
    Allen CL; Bayraktutan U
    Int J Stroke; 2009 Dec; 4(6):461-70. PubMed ID: 19930058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Therapeutic Nanoparticles from Grape Seed for Modulating Oxidative Stress.
    Wang T; Fan Q; Hong J; Chen Z; Zhou X; Zhang J; Dai Y; Jiang H; Gu Z; Cheng Y; Li Y
    Small; 2021 Nov; 17(45):e2102485. PubMed ID: 34605169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Injury and Therapy of Reactive Oxygen Species in Intracerebral Hemorrhage Looking at Mitochondria.
    Qu J; Chen W; Hu R; Feng H
    Oxid Med Cell Longev; 2016; 2016():2592935. PubMed ID: 27293511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.