These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33816041)

  • 1. Impacts of Saharan Mineral Dust on Air-Sea Interaction over North Atlantic Ocean Using a Fully Coupled Regional Model.
    Chen SH; Huang CC; Kuo YC; Tseng YH; Gu Y; Earl K; Chen CY; Choi Y; Liou KN
    J Geophys Res Atmos; 2021 Feb; 126(4):e2020JD033586. PubMed ID: 33816041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroids (Cnidaria, Hydrozoa) from Mauritanian Coral Mounds.
    Gil M; Ramil F; AgÍs JA
    Zootaxa; 2020 Nov; 4878(3):zootaxa.4878.3.2. PubMed ID: 33311142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Positive Low Cloud and Dust Feedbacks Amplify Tropical North Atlantic Multidecadal Oscillation.
    Yuan T; Oreopoulos L; Zelinka M; Yu H; Norris JR; Chin M; Platnick S; Meyer K
    Geophys Res Lett; 2016 Feb; 43(3):1349-1356. PubMed ID: 32818003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation.
    Sun C; Kucharski F; Li J; Jin FF; Kang IS; Ding R
    Nat Commun; 2017 Jul; 8():15998. PubMed ID: 28685765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. North Atlantic Ocean control on surface heat flux on multidecadal timescales.
    Gulev SK; Latif M; Keenlyside N; Park W; Koltermann KP
    Nature; 2013 Jul; 499(7459):464-7. PubMed ID: 23887431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sea surface temperature (SST) and SST anomaly (SSTA) datasets over the last four decades (1977-2016) during typhoon season (May to November) in the entire Global Ocean, North Pacific Ocean, Philippine Sea, South China sea, and Eastern China Sea.
    Pandey RS; Liou YA
    Data Brief; 2022 Dec; 45():108646. PubMed ID: 36426025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sea surface temperature variability: patterns and mechanisms.
    Deser C; Alexander MA; Xie SP; Phillips AS
    Ann Rev Mar Sci; 2010; 2():115-43. PubMed ID: 21141660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glacial to Holocene changes in trans-Atlantic Saharan dust transport and dust-climate feedbacks.
    Williams RH; McGee D; Kinsley CW; Ridley DA; Hu S; Fedorov A; Tal I; Murray RW; deMenocal PB
    Sci Adv; 2016 Nov; 2(11):e1600445. PubMed ID: 28138515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The shift of decadal trend in Middle East dust activities attributed to North Tropical Atlantic variability.
    Liu G; Li J; Ying T
    Sci Bull (Beijing); 2023 Jul; 68(13):1439-1446. PubMed ID: 37296039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocean variability and air-sea fluxes produced by atmospheric rivers.
    Shinoda T; Zamudio L; Guo Y; Metzger EJ; Fairall CW
    Sci Rep; 2019 Feb; 9(1):2152. PubMed ID: 30770858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A case study of Chlorophyll a response to tropical cyclone Wind Pump considering Kuroshio invasion and air-sea heat exchange.
    Liu Y; Tang D; Tang S; Morozov E; Liang W; Sui Y
    Sci Total Environ; 2020 Nov; 741():140290. PubMed ID: 32603939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saharan air outflow variability in the 1980-2020 period.
    Adame JA; Notario A; Cuevas CA; Saiz-Lopez A
    Sci Total Environ; 2022 Sep; 839():156268. PubMed ID: 35643146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oceanic eddy-induced modifications to air-sea heat and CO
    Pezzi LP; de Souza RB; Santini MF; Miller AJ; Carvalho JT; Parise CK; Quadro MF; Rosa EB; Justino F; Sutil UA; Cabrera MJ; Babanin AV; Voermans J; Nascimento EL; Alves RCM; Munchow GB; Rubert J
    Sci Rep; 2021 May; 11(1):10648. PubMed ID: 34017014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns.
    Iglesias I; Lorenzo MN; Lázaro C; Fernandes MJ; Bastos L
    Sci Total Environ; 2017 Dec; 609():861-874. PubMed ID: 28783913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition between ocean thermal structure and tropical cyclone characteristics modulates ocean environmental responses in the Yellow and Bohai Seas.
    Wang X; Li J; Sun L; Xu M; Liu H; Liu R
    Mar Environ Res; 2024 Apr; 196():106444. PubMed ID: 38484649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the Atlantic Multidecadal Oscillation on the Pacific North Equatorial Current bifurcation.
    Wu CR; Lin YF; Qiu B
    Sci Rep; 2019 Feb; 9(1):2162. PubMed ID: 30770851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intense atmospheric frontogenesis by air-sea coupling processes during the passage of Typhoon Lingling captured at Ieodo Ocean Research Station.
    Yang S; Moon IJ; Bae HJ; Kim BM; Byun DS; Lee HY
    Sci Rep; 2022 Sep; 12(1):15513. PubMed ID: 36109606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Sea Surface Physical Processes in Mixed-Layer Temperature Changes During Summer Marine Heat Waves in the Chile-Peru Current System.
    Cooley KM; Fewings MR; Lerczak JA; O'Neill LW; Brown KS
    J Geophys Res Oceans; 2022 Jul; 127(7):e2021JC018338. PubMed ID: 36245950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing the impact of suppressing Southern Ocean SST variability in a coupled climate model.
    Purich A; Boschat G; Liguori G
    Sci Rep; 2021 Nov; 11(1):22069. PubMed ID: 34764339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A 20-year simulated climatology of global dust aerosol deposition.
    Zheng Y; Zhao T; Che H; Liu Y; Han Y; Liu C; Xiong J; Liu J; Zhou Y
    Sci Total Environ; 2016 Jul; 557-558():861-8. PubMed ID: 27084995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.