These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 33816062)

  • 1. Walking speed measurement technology: A review.
    MejiaCruz Y; Franco J; Hainline G; Fritz S; Jiang Z; Caicedo JM; Davis B; Hirth V
    Curr Geriatr Rep; 2021 Mar; 10(1):32-41. PubMed ID: 33816062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic Estimation of Cadence and Walking Speed From Floor Vibrations.
    MejiaCruz Y; Caicedo JM; Jiang Z; Franco JM
    IEEE J Transl Eng Health Med; 2024; 12():508-519. PubMed ID: 39050619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating Walking Speed in the Wild.
    Baroudi L; Newman MW; Jackson EA; Barton K; Shorter KA; Cain SM
    Front Sports Act Living; 2020; 2():583848. PubMed ID: 33345151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Next Steps in Wearable Technology and Community Ambulation in Multiple Sclerosis.
    Frechette ML; Meyer BM; Tulipani LJ; Gurchiek RD; McGinnis RS; Sosnoff JJ
    Curr Neurol Neurosci Rep; 2019 Sep; 19(10):80. PubMed ID: 31485896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.
    Gordt K; Gerhardy T; Najafi B; Schwenk M
    Gerontology; 2018; 64(1):74-89. PubMed ID: 29130977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications.
    Muro-de-la-Herran A; Garcia-Zapirain B; Mendez-Zorrilla A
    Sensors (Basel); 2014 Feb; 14(2):3362-94. PubMed ID: 24556672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward a Remote Assessment of Walking Bout and Speed: Application in Patients With Multiple Sclerosis.
    Atrsaei A; Dadashi F; Mariani B; Gonzenbach R; Aminian K
    IEEE J Biomed Health Inform; 2021 Nov; 25(11):4217-4228. PubMed ID: 33914688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of shoe-worn Gait Up Physilog®5 wearable inertial sensors in adolescents.
    Carroll K; Kennedy RA; Koutoulas V; Bui M; Kraan CM
    Gait Posture; 2022 Jan; 91():19-25. PubMed ID: 34628218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach.
    Kobsar D; Ferber R
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating Lower Limb Kinematics Using a Reduced Wearable Sensor Count.
    Sy L; Raitor M; Rosario MD; Khamis H; Kark L; Lovell NH; Redmond SJ
    IEEE Trans Biomed Eng; 2021 Apr; 68(4):1293-1304. PubMed ID: 32970590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring Gait Parameters from Structural Vibrations.
    Davis BT; Bryant BI; Fritz SL; Handlery R; Flach A; Hirth VA
    Measurement (Lond); 2022 May; 195():. PubMed ID: 35600226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Bayesian inference system for recognition of walking activities and prediction of gait events using wearable sensors.
    Martinez-Hernandez U; Dehghani-Sanij AA
    Neural Netw; 2018 Jun; 102():107-119. PubMed ID: 29567532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wearable sensor-based in-home assessment of gait, balance, and physical activity for discrimination of frailty status: baseline results of the Arizona frailty cohort study.
    Schwenk M; Mohler J; Wendel C; D'Huyvetter K; Fain M; Taylor-Piliae R; Najafi B
    Gerontology; 2015; 61(3):258-67. PubMed ID: 25547185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing different methods of gait speed estimation using wearable sensors in individuals with varying levels of mobility impairments.
    Nunez EH; Parhar S; Iwata I; Setoguchi S; Chen H; Daneault JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3792-3798. PubMed ID: 33018827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing Gait in Parkinson's Disease Using Wearable Motion Sensors: A Systematic Review.
    Brognara L; Palumbo P; Grimm B; Palmerini L
    Diseases; 2019 Feb; 7(1):. PubMed ID: 30764502
    [No Abstract]   [Full Text] [Related]  

  • 17. Validation of a Sensor-Based Gait Analysis System with a Gold-Standard Motion Capture System in Patients with Parkinson's Disease.
    Jakob V; Küderle A; Kluge F; Klucken J; Eskofier BM; Winkler J; Winterholler M; Gassner H
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wearable inertial sensors are highly sensitive in the detection of gait disturbances and fatigue at early stages of multiple sclerosis.
    Müller R; Hamacher D; Hansen S; Oschmann P; Keune PM
    BMC Neurol; 2021 Sep; 21(1):337. PubMed ID: 34481481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review.
    Benson LC; Clermont CA; Bošnjak E; Ferber R
    Gait Posture; 2018 Jun; 63():124-138. PubMed ID: 29730488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.