BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 33816270)

  • 1. The Prognostic Significance of
    Qin YZ; Jiang Q; Xu LP; Wang Y; Jiang H; Dao FT; Chen WM; Zhao XS; Liu YR; Zhang XH; Liu KY; Huang XJ
    Front Oncol; 2021; 11():632532. PubMed ID: 33816270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ZNF384 fusion transcript levels for measurable residual disease monitoring in adult B-cell acute lymphoblastic leukemia.
    Shi ZY; Wang X; Chen WM; Li LD; Hao Y; Li JY; Sun K; Zhao XS; Jiang H; Jiang Q; Huang XJ; Qin YZ
    Hematol Oncol; 2024 Jan; 42(1):e3251. PubMed ID: 38287528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical features and outcomes of fusion gene defined adult Ph-negative B-cell precursor acute lymphoblastic leukemia patients: A single institutional report.
    Sun K; Wang J; Chen WM; Xu N; Long LY; Wang X; Jiang H; Jiang Q; Huang XJ; Qin YZ
    Biomol Biomed; 2023 Mar; 23(2):298-309. PubMed ID: 36124444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc finger protein 384 (
    Sudutan T; Erbilgin Y; Hatirnaz Ng O; Karaman S; Karakas Z; Kucukcankurt F; Celkan T; Timur C; Ozdemir GN; Hacısalihoglu S; Gelen SA; Sayitoğlu M
    Leuk Lymphoma; 2022 Dec; 63(12):2931-2939. PubMed ID: 35921545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases.
    Li JF; Dai YT; Lilljebjörn H; Shen SH; Cui BW; Bai L; Liu YF; Qian MX; Kubota Y; Kiyoi H; Matsumura I; Miyazaki Y; Olsson L; Tan AM; Ariffin H; Chen J; Takita J; Yasuda T; Mano H; Johansson B; Yang JJ; Yeoh AE; Hayakawa F; Chen Z; Pui CH; Fioretos T; Chen SJ; Huang JY
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):E11711-E11720. PubMed ID: 30487223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype.
    Hirabayashi S; Ohki K; Nakabayashi K; Ichikawa H; Momozawa Y; Okamura K; Yaguchi A; Terada K; Saito Y; Yoshimi A; Ogata-Kawata H; Sakamoto H; Kato M; Fujimura J; Hino M; Kinoshita A; Kakuda H; Kurosawa H; Kato K; Kajiwara R; Moriwaki K; Morimoto T; Nakamura K; Noguchi Y; Osumi T; Sakashita K; Takita J; Yuza Y; Matsuda K; Yoshida T; Matsumoto K; Hata K; Kubo M; Matsubara Y; Fukushima T; Koh K; Manabe A; Ohara A; Kiyokawa N;
    Haematologica; 2017 Jan; 102(1):118-129. PubMed ID: 27634205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunophenotypic characteristics of ZNF384 rearrangement compared with BCR-ABL1, KMT2A rearrangement, and other adult B-cell precursor acute lymphoblastic leukemia.
    Wang YZ; Qin YZ; Chang Y; Yuan XY; Chen WM; He LL; Hao L; Shi WH; Jiang Q; Jiang H; Huang XJ; Liu YR
    Cytometry B Clin Cytom; 2022 Sep; 102(5):360-369. PubMed ID: 35735203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic application of fluorescence in situ hybridization and immunophenotype profile for the identification of ZNF384 gene rearrangements in B cell acute lymphoblastic leukemia.
    Janet NB; Kulkarni U; Arun AK; Bensega B; Devasia AJ; Korula A; Abraham A; George B; Mathews V; Balasubramanian P
    Int J Lab Hematol; 2021 Aug; 43(4):658-663. PubMed ID: 33988307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Identification of TCF3-ZNF384 fusion by transcriptome sequencing in B cell acute lymphoblastic leukemia and its laboratory and clinical characteristics].
    Wu Q; Wang F; Yang J; Chen X; Ma X; Cao P; Zhang Y; Nie D; Chen J; Zhou X; Fang J; Liu M; Zhang M; Wu P; Wang T; Liu H
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2021 Apr; 38(4):351-354. PubMed ID: 33834463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of EP300-ZNF384 fusion in patients with acute lymphoblastic leukemia using RNA fusion gene panel sequencing.
    Jing Y; Li YF; Wan H; Liu DH
    Ann Hematol; 2020 Nov; 99(11):2611-2617. PubMed ID: 32980888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion.
    Shago M; Abla O; Hitzler J; Weitzman S; Abdelhaleem M
    Pediatr Blood Cancer; 2016 Nov; 63(11):1915-21. PubMed ID: 27392123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TCF3 gene rearrangements in pediatric B-cell acute lymphoblastic leukemia-A single center experience.
    Zerkalenkova E; Menchits Y; Borkovskaia A; Sokolova S; Soldatkina O; Mikhailova E; Popov A; Komkov A; Rumiantseva Y; Karachunskii A; Olshanskaya Y
    Int J Lab Hematol; 2023 Aug; 45(4):533-540. PubMed ID: 37058324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leukemia With
    Lin N; Yan X; Cai D; Wang L
    Front Oncol; 2021; 11():709036. PubMed ID: 34395283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Clinical characteristics and outcomes of childhood B-ALL with ZNF384 and MEF2D rearrangements].
    Hirabayashi S; Manabe A; Ohki K; Kiyokawa N
    Rinsho Ketsueki; 2023; 64(7):633-638. PubMed ID: 37544723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The prognostic significance of Wilms' tumor gene 1 (WT1) expression at diagnosis in adults with Ph-negative B cell precursor acute lymphoblastic leukemia.
    Qin YZ; Jiang Q; Xu LP; Jiang H; Wang Y; Zhao XS; Li ZR; Lai YY; Liu YR; Zhang XH; Liu KY; Huang XJ
    Ann Hematol; 2019 Nov; 98(11):2551-2559. PubMed ID: 31493003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy.
    Jeha S; Choi J; Roberts KG; Pei D; Coustan-Smith E; Inaba H; Rubnitz JE; Ribeiro RC; Gruber TA; Raimondi SC; Karol SE; Qu C; Brady SW; Gu Z; Yang JJ; Cheng C; Downing JR; Evans WE; Relling MV; Campana D; Mullighan CG; Pui CH
    Blood Cancer Discov; 2021 Jul; 2(4):326-337. PubMed ID: 34250504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification and genetics of pediatric B-other acute lymphoblastic leukemia by targeted RNA sequencing.
    Migita NA; Jotta PY; Nascimento NPD; Vasconcelos VS; Centoducatte GL; Massirer KB; Azevedo AC; Brandalise SR; Yunes JA
    Blood Adv; 2023 Jul; 7(13):2957-2971. PubMed ID: 36848637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular classification improves risk assessment in adult BCR-ABL1-negative B-ALL.
    Paietta E; Roberts KG; Wang V; Gu Z; Buck GAN; Pei D; Cheng C; Levine RL; Abdel-Wahab O; Cheng Z; Wu G; Qu C; Shi L; Pounds S; Willman CL; Harvey R; Racevskis J; Barinka J; Zhang Y; Dewald GW; Ketterling RP; Alejos D; Lazarus HM; Luger SM; Foroni L; Patel B; Fielding AK; Melnick A; Marks DI; Moorman AV; Wiernik PH; Rowe JM; Tallman MS; Goldstone AH; Mullighan CG; Litzow MR
    Blood; 2021 Sep; 138(11):948-958. PubMed ID: 33895809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Allogeneic hematopoietic stem cell transplantation for treatment of Philadelphia chromosome positive acute lymphoblastic leukemia].
    Xu LP; Huang XJ; Liu KY; Chen H; Liu DH; Zhang YC; Chen YH; Han W; Gao ZY; Lu DP
    Beijing Da Xue Xue Bao Yi Xue Ban; 2005 Jun; 37(3):231-5. PubMed ID: 15968308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The Application of RNA-Sequencing in Pediatric B-Cell Acute Lymphoblastic Leukemia].
    Zou PL; Liao X; Xiao JW
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2022 Dec; 30(6):1700-1707. PubMed ID: 36476892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.