These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33816853)

  • 41. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale.
    Chen Q; Lee K; Yan S; Kim S; Wei CH; Lu Z
    PLoS Comput Biol; 2020 Apr; 16(4):e1007617. PubMed ID: 32324731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiview Incomplete Knowledge Graph Integration with application to cross-institutional EHR data harmonization.
    Zhou D; Gan Z; Shi X; Patwari A; Rush E; Bonzel CL; Panickan VA; Hong C; Ho YL; Cai T; Costa L; Li X; Castro VM; Murphy SN; Brat G; Weber G; Avillach P; Gaziano JM; Cho K; Liao KP; Lu J; Cai T
    J Biomed Inform; 2022 Sep; 133():104147. PubMed ID: 35872266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigating the impact of pre-processing techniques and pre-trained word embeddings in detecting Arabic health information on social media.
    Albalawi Y; Buckley J; Nikolov NS
    J Big Data; 2021; 8(1):95. PubMed ID: 34249602
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Summarization of biomedical articles using domain-specific word embeddings and graph ranking.
    Moradi M; Dashti M; Samwald M
    J Biomed Inform; 2020 Jul; 107():103452. PubMed ID: 32439479
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unsupervised Representation Learning for Proteochemometric Modeling.
    Kim PT; Winter R; Clevert DA
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884688
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unsupervised inference of implicit biomedical events using context triggers.
    Chung JW; Yang W; Park JC
    BMC Bioinformatics; 2020 Jan; 21(1):29. PubMed ID: 31992184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. RadioBERT: A deep learning-based system for medical report generation from chest X-ray images using contextual embeddings.
    Kaur N; Mittal A
    J Biomed Inform; 2022 Nov; 135():104220. PubMed ID: 36229001
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Filtering large-scale event collections using a combination of supervised and unsupervised learning for event trigger classification.
    Mehryary F; Kaewphan S; Hakala K; Ginter F
    J Biomed Semantics; 2016; 7():27. PubMed ID: 27175227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. On cross-lingual retrieval with multilingual text encoders.
    Litschko R; Vulić I; Ponzetto SP; Glavaš G
    Inf Retr Boston; 2022; 25(2):149-183. PubMed ID: 35573078
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Clinical Concept Embeddings Learned from Massive Sources of Multimodal Medical Data.
    Beam AL; Kompa B; Schmaltz A; Fried I; Weber G; Palmer N; Shi X; Cai T; Kohane IS
    Pac Symp Biocomput; 2020; 25():295-306. PubMed ID: 31797605
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identifying the Perceived Severity of Patient-Generated Telemedical Queries Regarding COVID: Developing and Evaluating a Transfer Learning-Based Solution.
    Gatto J; Seegmiller P; Johnston G; Preum SM
    JMIR Med Inform; 2022 Sep; 10(9):e37770. PubMed ID: 35981230
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An Automated Toxicity Classification on Social Media Using LSTM and Word Embedding.
    Alsharef A; Aggarwal K; Sonia ; Koundal D; Alyami H; Ameyed D
    Comput Intell Neurosci; 2022; 2022():8467349. PubMed ID: 35211168
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting Semantic Similarity Between Clinical Sentence Pairs Using Transformer Models: Evaluation and Representational Analysis.
    Ormerod M; Martínez Del Rincón J; Devereux B
    JMIR Med Inform; 2021 May; 9(5):e23099. PubMed ID: 34037527
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Training and intrinsic evaluation of lightweight word embeddings for the clinical domain in Spanish.
    Chiu C; Villena F; Martin K; Núñez F; Besa C; Dunstan J
    Front Artif Intell; 2022; 5():970517. PubMed ID: 36213168
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combining Contextualized Embeddings and Prior Knowledge for Clinical Named Entity Recognition: Evaluation Study.
    Jiang M; Sanger T; Liu X
    JMIR Med Inform; 2019 Nov; 7(4):e14850. PubMed ID: 31719024
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Template-Free Prompting for Few-Shot Named Entity Recognition via Semantic-Enhanced Contrastive Learning.
    He K; Mao R; Huang Y; Gong T; Li C; Cambria E
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; PP():. PubMed ID: 37751350
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Using Word Embeddings to Learn a Better Food Ontology.
    Youn J; Naravane T; Tagkopoulos I
    Front Artif Intell; 2020; 3():584784. PubMed ID: 33733222
    [TBL] [Abstract][Full Text] [Related]  

  • 58. BIOSSES: a semantic sentence similarity estimation system for the biomedical domain.
    Sogancioglu G; Öztürk H; Özgür A
    Bioinformatics; 2017 Jul; 33(14):i49-i58. PubMed ID: 28881973
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identifying incidental findings from radiology reports of trauma patients: An evaluation of automated feature representation methods.
    Trivedi G; Hong C; Dadashzadeh ER; Handzel RM; Hochheiser H; Visweswaran S
    Int J Med Inform; 2019 Sep; 129():81-87. PubMed ID: 31445293
    [TBL] [Abstract][Full Text] [Related]  

  • 60. GenURL: A General Framework for Unsupervised Representation Learning.
    Li S; Liu Z; Zang Z; Wu D; Chen Z; Li SZ
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; PP():. PubMed ID: 38315588
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.