BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33816869)

  • 21. Dataset of Indian and Thai banknotes with annotations.
    Meshram V; Patil K; Chumchu P
    Data Brief; 2022 Apr; 41():108007. PubMed ID: 35282177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks.
    Schlegl T; Seeböck P; Waldstein SM; Langs G; Schmidt-Erfurth U
    Med Image Anal; 2019 May; 54():30-44. PubMed ID: 30831356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Utilizing Amari-Alpha Divergence to Stabilize the Training of Generative Adversarial Networks.
    Cai L; Chen Y; Cai N; Cheng W; Wang H
    Entropy (Basel); 2020 Apr; 22(4):. PubMed ID: 33286184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Annotated Peruvian banknote dataset for currency recognition and classification.
    Caytuiro-Silva NE; Peña-Alejandro JM; Castro-Gutierrez EG; Sulla-Torres J; Maraza-Quispe B
    Data Brief; 2023 Dec; 51():109715. PubMed ID: 37965616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unsupervised Domain Adaptation for Facial Expression Recognition Using Generative Adversarial Networks.
    Wang X; Wang X; Ni Y
    Comput Intell Neurosci; 2018; 2018():7208794. PubMed ID: 30111995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Augmentation of Doppler Radar Data Using Generative Adversarial Network for Human Motion Analysis.
    Alnujaim I; Kim Y
    Healthc Inform Res; 2019 Oct; 25(4):344-349. PubMed ID: 31777679
    [TBL] [Abstract][Full Text] [Related]  

  • 28. StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.
    Zhang H; Xu T; Li H; Zhang S; Wang X; Huang X; Metaxas DN
    IEEE Trans Pattern Anal Mach Intell; 2019 Aug; 41(8):1947-1962. PubMed ID: 30010548
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generative Adversarial Networks-Based Semi-Supervised Automatic Modulation Recognition for Cognitive Radio Networks.
    Li M; Li O; Liu G; Zhang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biosignal Data Augmentation Based on Generative Adversarial Networks.
    Haradal S; Hayashi H; Uchida S
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():368-371. PubMed ID: 30440412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adversarial learning for mono- or multi-modal registration.
    Fan J; Cao X; Wang Q; Yap PT; Shen D
    Med Image Anal; 2019 Dec; 58():101545. PubMed ID: 31557633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generative adversarial networks with mixture of t-distributions noise for diverse image generation.
    Sun J; Zhong G; Chen Y; Liu Y; Li T; Huang K
    Neural Netw; 2020 Feb; 122():374-381. PubMed ID: 31765986
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential.
    Tschuchnig ME; Oostingh GJ; Gadermayr M
    Patterns (N Y); 2020 Sep; 1(6):100089. PubMed ID: 33205132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting Ultra-High-Performance Concrete Compressive Strength Using Tabular Generative Adversarial Networks.
    Marani A; Jamali A; Nehdi ML
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114394
    [TBL] [Abstract][Full Text] [Related]  

  • 35. druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.
    Kadurin A; Nikolenko S; Khrabrov K; Aliper A; Zhavoronkov A
    Mol Pharm; 2017 Sep; 14(9):3098-3104. PubMed ID: 28703000
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GANsDTA: Predicting Drug-Target Binding Affinity Using GANs.
    Zhao L; Wang J; Pang L; Liu Y; Zhang J
    Front Genet; 2019; 10():1243. PubMed ID: 31993067
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perceptual Adversarial Networks for Image-to-Image Transformation.
    Wang C; Xu C; Wanga C; Tao D
    IEEE Trans Image Process; 2018 Aug; 27(8):4066-4079. PubMed ID: 29993743
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning Meets Game Theory: Bregman-Based Algorithms for Interactive Deep Generative Adversarial Networks.
    Tembine H
    IEEE Trans Cybern; 2020 Mar; 50(3):1132-1145. PubMed ID: 30605115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization.
    Siddiquee MMR; Zhou Z; Tajbakhsh N; Feng R; Gotway MB; Bengio Y; Liang J
    Proc IEEE Int Conf Comput Vis; 2019 Nov; 2019():191-200. PubMed ID: 32612486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retinal Image Synthesis and Semi-Supervised Learning for Glaucoma Assessment.
    Diaz-Pinto A; Colomer A; Naranjo V; Morales S; Xu Y; Frangi AF
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2211-2218. PubMed ID: 30843823
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.