These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33816927)

  • 1. Identifying multiscale spatio-temporal patterns in human mobility using manifold learning.
    Watson JR; Gelbaum Z; Titus M; Zoch G; Wrathall D
    PeerJ Comput Sci; 2020; 6():e276. PubMed ID: 33816927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing reliable human mobility patterns from higher order memory in mobile communications.
    Matamalas JT; De Domenico M; Arenas A
    J R Soc Interface; 2016 Aug; 13(121):. PubMed ID: 27581479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the use of mobile phone data to describe recurrent mobility patterns in spatial epidemic models.
    Panigutti C; Tizzoni M; Bajardi P; Smoreda Z; Colizza V
    R Soc Open Sci; 2017 May; 4(5):160950. PubMed ID: 28572990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supersampling and Network Reconstruction of Urban Mobility.
    Sagarra O; Szell M; Santi P; Díaz-Guilera A; Ratti C
    PLoS One; 2015; 10(8):e0134508. PubMed ID: 26275237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detecting climate adaptation with mobile network data in Bangladesh: anomalies in communication, mobility and consumption patterns during cyclone Mahasen.
    Lu X; Wrathall DJ; Sundsøy PR; Nadiruzzaman M; Wetter E; Iqbal A; Qureshi T; Tatem AJ; Canright GS; Engø-Monsen K; Bengtsson L
    Clim Change; 2016; 138(3):505-519. PubMed ID: 32355373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rich do not rise early: spatio-temporal patterns in the mobility networks of different socio-economic classes.
    Lotero L; Hurtado RG; Floría LM; Gómez-Gardeñes J
    R Soc Open Sci; 2016 Oct; 3(10):150654. PubMed ID: 27853531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing short-term crime prediction with human mobility flows and deep learning architectures.
    Wu J; Abrar SM; Awasthi N; Frias-Martinez E; Frias-Martinez V
    EPJ Data Sci; 2022; 11(1):53. PubMed ID: 36406335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying seasonal mobility profiles from anonymized and aggregated mobile phone data. Application in food security.
    Zufiria PJ; Pastor-Escuredo D; Úbeda-Medina L; Hernandez-Medina MA; Barriales-Valbuena I; Morales AJ; Jacques DC; Nkwambi W; Diop MB; Quinn J; Hidalgo-Sanchís P; Luengo-Oroz M
    PLoS One; 2018; 13(4):e0195714. PubMed ID: 29698404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The temporal network of mobile phone users in Changchun Municipality, Northeast China.
    Du Z; Yang Y; Gao C; Huang L; Huang Q; Bai Y
    Sci Data; 2018 Oct; 5():180228. PubMed ID: 30375989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of big patient mobility data for identifying medical regions, spatio-temporal characteristics and care demands of patients on the move.
    Koylu C; Delil S; Guo D; Celik RN
    Int J Health Geogr; 2018 Aug; 17(1):32. PubMed ID: 30071864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DST-Predict: Predicting Individual Mobility Patterns From Mobile Phone GPS Data.
    Zaidi SMA; Chandola V; Yoo EH
    IEEE Access; 2021; 9():167592-167604. PubMed ID: 35813002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Laplacian Learning.
    Merkurjev E; Nguyen DD; Wei GW
    Appl Intell (Dordr); 2023 Jun; 53(12):15727-15746. PubMed ID: 38031564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Google Location History data to quantify fine-scale human mobility.
    Ruktanonchai NW; Ruktanonchai CW; Floyd JR; Tatem AJ
    Int J Health Geogr; 2018 Jul; 17(1):28. PubMed ID: 30049275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven generation of spatio-temporal routines in human mobility.
    Pappalardo L; Simini F
    Data Min Knowl Discov; 2018; 32(3):787-829. PubMed ID: 31258383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ranking places in attributed temporal urban mobility networks.
    Nanni M; Tortosa L; Vicent JF; Yeghikyan G
    PLoS One; 2020; 15(10):e0239319. PubMed ID: 33052916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs.
    Yuan J; Li X; Zhang J; Luo L; Dong Q; Lv J; Zhao Y; Jiang X; Zhang S; Zhang W; Liu T
    Neuroimage; 2018 Oct; 180(Pt B):350-369. PubMed ID: 29102809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale mobility patterns and the restriction of human movement.
    Schindler DJ; Clarke J; Barahona M
    R Soc Open Sci; 2023 Oct; 10(10):230405. PubMed ID: 37830024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating functional consistency of mobility-related urban zones via motion-driven embedding vectors and local POI-type distributions.
    Crivellari A; Resch B
    Comput Urban Sci; 2022; 2(1):19. PubMed ID: 35783355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Approach to Predict user Mobility Using Semantic Analysis and Machine Learning.
    Fernandes R; D'Souza G L R
    J Med Syst; 2017 Oct; 41(12):188. PubMed ID: 29052021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.