These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 33817040)
1. Robust adaptive PD-like control of lower limb rehabilitation robot based on human movement data. Hu N; Wang A; Wu Y PeerJ Comput Sci; 2021; 7():e394. PubMed ID: 33817040 [TBL] [Abstract][Full Text] [Related]
2. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related]
3. Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation. Zhu Z; Liu L; Zhang W; Jiang C; Wang X; Li J Front Neurosci; 2024; 18():1355052. PubMed ID: 38456145 [TBL] [Abstract][Full Text] [Related]
4. Musculoskeletal modeling and humanoid control of robots based on human gait data. Yu J; Zhang S; Wang A; Li W; Song L PeerJ Comput Sci; 2021; 7():e657. PubMed ID: 34458572 [TBL] [Abstract][Full Text] [Related]
5. A Multistage Hemiplegic Lower-Limb Rehabilitation Robot: Design and Gait Trajectory Planning. Wang X; Wang H; Zhang B; Zheng D; Yu H; Cheng B; Niu J Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610521 [TBL] [Abstract][Full Text] [Related]
6. Glenohumeral joint trajectory tracking for improving the shoulder compliance of the upper limb rehabilitation robot. Tang Y; Hao D; Cao C; Shi P; Yu H; Luan X; Fang F Med Eng Phys; 2023 Mar; 113():103961. PubMed ID: 36966005 [TBL] [Abstract][Full Text] [Related]
7. Design and verification of a human-robot interaction system for upper limb exoskeleton rehabilitation. Wendong W; Hanhao L; Menghan X; Yang C; Xiaoqing Y; Xing M; Bing Z Med Eng Phys; 2020 May; 79():19-25. PubMed ID: 32205023 [TBL] [Abstract][Full Text] [Related]
8. Autonomous motion and control of lower limb exoskeleton rehabilitation robot. Gao X; Zhang P; Peng X; Zhao J; Liu K; Miao M; Zhao P; Luo D; Li Y Front Bioeng Biotechnol; 2023; 11():1223831. PubMed ID: 37520296 [No Abstract] [Full Text] [Related]
9. Improved Active Disturbance Rejection Control for Trajectory Tracking Control of Lower Limb Robotic Rehabilitation Exoskeleton. Aole S; Elamvazuthi I; Waghmare L; Patre B; Meriaudeau F Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630115 [TBL] [Abstract][Full Text] [Related]
10. Customized Trajectory Optimization and Compliant Tracking Control for Passive Upper Limb Rehabilitation. Li L; Han J; Li X; Guo B; Wang X Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571735 [TBL] [Abstract][Full Text] [Related]
11. Reference trajectory generation for rehabilitation robots: complementary limb motion estimation. Vallery H; van Asseldonk EH; Buss M; van der Kooij H IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):23-30. PubMed ID: 19211320 [TBL] [Abstract][Full Text] [Related]
12. Time-delay estimation based computed torque control with robust adaptive RBF neural network compensator for a rehabilitation exoskeleton. Han S; Wang H; Tian Y; Christov N ISA Trans; 2020 Feb; 97():171-181. PubMed ID: 31399252 [TBL] [Abstract][Full Text] [Related]
13. Design and Control of Upper Limb Rehabilitation Training Robot Based on a Magnetorheological Joint Damper. Zhu J; Hu H; Zhao W; Yang J; Ouyang Q Micromachines (Basel); 2024 Feb; 15(3):. PubMed ID: 38542548 [TBL] [Abstract][Full Text] [Related]
14. Adaptive Gait Training of a Lower Limb Rehabilitation Robot Based on Human-Robot Interaction Force Measurement. Yu F; Liu Y; Wu Z; Tan M; Yu J Cyborg Bionic Syst; 2024; 5():0115. PubMed ID: 38912323 [TBL] [Abstract][Full Text] [Related]
15. [Voluntary and Adaptive Control Strategy for Ankle Rehabilitation Robot]. Shen Z; Zhang L; Su Y; Xing H; Li B Zhongguo Yi Liao Qi Xie Za Zhi; 2024 Jul; 48(4):385-391. PubMed ID: 39155250 [TBL] [Abstract][Full Text] [Related]
16. Spatiotemporal Compliance Control for a Wearable Lower Limb Rehabilitation Robot. Zhou J; Peng H; Su S; Song R IEEE Trans Biomed Eng; 2023 Jun; 70(6):1858-1868. PubMed ID: 37015454 [TBL] [Abstract][Full Text] [Related]
17. Kinematic Redundancy Analysis during Goal-Directed Motion for Trajectory Planning of an Upper-Limb Exoskeleton Robot. Wang C; Peng L; Hou ZG; Li J; Luo L; Chen S; Wang W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5251-5255. PubMed ID: 31947042 [TBL] [Abstract][Full Text] [Related]
18. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation. Taha Z; Abdul Majeed APP; Zainal Abidin AF; Hashem Ali MA; Khairuddin IM; Deboucha A; Wong Paul Tze MY Biomed Tech (Berl); 2018 Jul; 63(4):491-500. PubMed ID: 28809745 [TBL] [Abstract][Full Text] [Related]
19. Multi-mode adaptive control strategy for a lower limb rehabilitation robot. Liang X; Yan Y; Dai S; Guo Z; Li Z; Liu S; Su T Front Bioeng Biotechnol; 2024; 12():1392599. PubMed ID: 38817926 [TBL] [Abstract][Full Text] [Related]
20. Review of adaptive control for stroke lower limb exoskeleton rehabilitation robot based on motion intention recognition. Su D; Hu Z; Wu J; Shang P; Luo Z Front Neurorobot; 2023; 17():1186175. PubMed ID: 37465413 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]