These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33817040)

  • 21. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training.
    Wu Q; Wu H
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nonlinear time delay estimation based model reference adaptive impedance control for an upper-limb human-robot interaction.
    Omrani J; Moghaddam MM
    Proc Inst Mech Eng H; 2022 Mar; 236(3):385-398. PubMed ID: 34720012
    [TBL] [Abstract][Full Text] [Related]  

  • 24. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Model based control of a rehabilitation robot for lower extremities.
    Xie XL; Hou ZG; Li PF; Ji C; Zhang F; Tan M; Wang H; Hu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2263-6. PubMed ID: 21097222
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton.
    Long Y; Du Z; Cong L; Wang W; Zhang Z; Dong W
    ISA Trans; 2017 Mar; 67():389-397. PubMed ID: 28108003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards an SEMG-based tele-operated robot for masticatory rehabilitation.
    Kalani H; Moghimi S; Akbarzadeh A
    Comput Biol Med; 2016 Aug; 75():243-56. PubMed ID: 27322596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Gait Measurement System Using Laser Range Sensor Based on Lower-limb Rehabilitation Robot].
    Liu J; Guo S; Zheng L; Zhang Z
    Zhongguo Yi Liao Qi Xie Za Zhi; 2022 Mar; 46(2):137-140. PubMed ID: 35411737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Assistive Control Strategy for Rehabilitation Robots Using Velocity Field and Force Field.
    Asl HJ; Narikiyo T
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():790-795. PubMed ID: 31374727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation.
    Pan L; Song A; Duan S; Xu B
    Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Position Based Impedance Control Strategy for a Lower Limb Rehabilitation Robot.
    Liang X; Wang W; Hou ZG; Ren S; Wang J; Shi W; Peng L; Su T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():437-441. PubMed ID: 31945932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive Neural Sliding-Mode Controller for Alternative Control Strategies in Lower Limb Rehabilitation.
    Yang T; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):238-247. PubMed ID: 31603825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The "Beam-Me-In Strategy" - remote haptic therapist-patient interaction with two exoskeletons for stroke therapy.
    Baur K; Rohrbach N; Hermsdörfer J; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2019 Jul; 16(1):85. PubMed ID: 31296226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and Experimental Research of 3-RRS Parallel Ankle Rehabilitation Robot.
    Zou Y; Zhang A; Zhang Q; Zhang B; Wu X; Qin T
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait Phase Classification and Assist Torque Prediction for a Lower Limb Exoskeleton System Using Kernel Recursive Least-Squares Method.
    Ma Y; Wu X; Wang C; Yi Z; Liang G
    Sensors (Basel); 2019 Dec; 19(24):. PubMed ID: 31835626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait improvements by assisting hip movements with the robot in children with cerebral palsy: a pilot randomized controlled trial.
    Kawasaki S; Ohata K; Yoshida T; Yokoyama A; Yamada S
    J Neuroeng Rehabil; 2020 Jul; 17(1):87. PubMed ID: 32620131
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Human-robot global Simulink modeling and analysis for an end-effector upper limb rehabilitation robot].
    Liu Y; Ji L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Feb; 35(1):8-14. PubMed ID: 29745594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.