BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33817279)

  • 21. Effects of water availability, nitrogen supply and atmospheric CO
    Stock WD; Evans JR
    Funct Plant Biol; 2006 Mar; 33(3):219-227. PubMed ID: 32689229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomass increase under zinc deficiency caused by delay of early flowering in Arabidopsis.
    Chen X; Ludewig U
    J Exp Bot; 2018 Feb; 69(5):1269-1279. PubMed ID: 29340613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plastic and adaptive responses of plant respiration to changes in atmospheric CO(2) concentration.
    Gonzàlez-Meler MA; Blanc-Betes E; Flower CE; Ward JK; Gomez-Casanovas N
    Physiol Plant; 2009 Dec; 137(4):473-84. PubMed ID: 19671094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accession-dependent action potentials in Arabidopsis.
    Favre P; Greppin H; Degli Agosti R
    J Plant Physiol; 2011 May; 168(7):653-60. PubMed ID: 21112666
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Systemic signalling of environmental cues in Arabidopsis leaves.
    Coupe SA; Palmer BG; Lake JA; Overy SA; Oxborough K; Woodward FI; Gray JE; Quick WP
    J Exp Bot; 2006; 57(2):329-41. PubMed ID: 16330523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leaf δ
    Berry SC; Varney GT; Flanagan LB
    Oecologia; 1997 Feb; 109(4):499-506. PubMed ID: 28307333
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality.
    Duan H; Chaszar B; Lewis JD; Smith RA; Huxman TE; Tissue DT
    Tree Physiol; 2018 Aug; 38(8):1138-1151. PubMed ID: 29701843
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO
    Hättenschwiler S
    Oecologia; 2001 Sep; 129(1):31-42. PubMed ID: 28547065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arabidopsis growth under prolonged high temperature and water deficit: independent or interactive effects?
    Vile D; Pervent M; Belluau M; Vasseur F; Bresson J; Muller B; Granier C; Simonneau T
    Plant Cell Environ; 2012 Apr; 35(4):702-18. PubMed ID: 21988660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon dioxide diffusion across stomata and mesophyll and photo-biochemical processes as affected by growth CO2 and phosphorus nutrition in cotton.
    Singh SK; Badgujar G; Reddy VR; Fleisher DH; Bunce JA
    J Plant Physiol; 2013 Jun; 170(9):801-13. PubMed ID: 23384758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Leaf Dynamics of Panicum maximum under Future Climatic Changes.
    Britto de Assis Prado CH; Haik Guedes de Camargo-Bortolin L; Castro É; Martinez CA
    PLoS One; 2016; 11(2):e0149620. PubMed ID: 26894932
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiological and morphological responses of grassland species to elevated atmospheric CO2 concentrations in FACE-systems and natural CO2 springs.
    Marchi S; Tognetti R; Vaccari FP; Lanini M; Kaligarič M; Miglietta F; Raschi A
    Funct Plant Biol; 2004 Mar; 31(2):181-194. PubMed ID: 32688890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting plasticity of rosette growth and metabolic fluxes in Arabidopsis thaliana.
    Tong H; Laitinen RAE; Nikoloski Z
    New Phytol; 2023 Oct; 240(1):426-438. PubMed ID: 37507350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plastic trait integration across a CO2 gradient in Arabidopsis thaliana.
    Tonsor SJ; Scheiner SM
    Am Nat; 2007 May; 169(5):E119-40. PubMed ID: 17427126
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of two centuries of global environmental variation on phenology and physiology of Arabidopsis thaliana.
    DeLeo VL; Menge DNL; Hanks EM; Juenger TE; Lasky JR
    Glob Chang Biol; 2020 Feb; 26(2):523-538. PubMed ID: 31665819
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phenotypic Trait Variation as a Response to Altitude-Related Constraints in Arabidopsis Populations.
    Duruflé H; Ranocha P; Mbadinga Mbadinga DL; Déjean S; Bonhomme M; San Clemente H; Viudes S; Eljebbawi A; Delorme-Hinoux V; Sáez-Vásquez J; Reichheld JP; Escaravage N; Burrus M; Dunand C
    Front Plant Sci; 2019; 10():430. PubMed ID: 31024596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of atmospheric oxygen on leaf structure and starch deposition in Arabidopsis thaliana.
    Ramonell KM; Kuang A; Porterfield DM; Crispi ML; Xiao Y; McClure G; Musgrave ME
    Plant Cell Environ; 2001 Apr; 24(4):419-28. PubMed ID: 11676444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Woody tissue photosynthesis increases radial stem growth of young poplar trees under ambient atmospheric CO2 but its contribution ceases under elevated CO2.
    De Roo L; Lauriks F; Salomón RL; Oleksyn J; Steppe K
    Tree Physiol; 2020 Oct; 40(11):1572-1582. PubMed ID: 32597984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural variation of the root morphological response to nitrate supply in Arabidopsis thaliana.
    De Pessemier J; Chardon F; Juraniec M; Delaplace P; Hermans C
    Mech Dev; 2013 Jan; 130(1):45-53. PubMed ID: 22683348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability.
    Centritto M; Lucas ME; Jarvis PG
    Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.