These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33817279)

  • 41. Compensatory responses of CO
    Callaway RM; DeLucia EH; Thomas EM; Schlesinger WH
    Oecologia; 1994 Jul; 98(2):159-166. PubMed ID: 28313973
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Leaf respiration in darkness and in the light under pre-industrial, current and elevated atmospheric CO₂ concentrations.
    Ayub G; Zaragoza-Castells J; Griffin KL; Atkin OK
    Plant Sci; 2014 Sep; 226():120-30. PubMed ID: 25113457
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenotypic plasticity and integration in response to flooded conditions in natural accessions of Arabidopsis thaliana (L.) Heynh (Brassicaceae).
    Pigliucci M; Kolodynska A
    Ann Bot; 2002 Aug; 90(2):199-207. PubMed ID: 12197517
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Arabidopsis thaliana populations show clinal variation in a climatic gradient associated with altitude.
    Montesinos-Navarro A; Wig J; Pico FX; Tonsor SJ
    New Phytol; 2011 Jan; 189(1):282-94. PubMed ID: 20880224
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Induced mutations alter patterns of quantitative variation, phenotypic integration, and plasticity to elevated CO
    Jonas M; Navarro D
    J Plant Res; 2019 Jan; 132(1):33-47. PubMed ID: 30255212
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.
    Vu JC; Allen LH
    J Plant Physiol; 2009 Jul; 166(11):1141-51. PubMed ID: 19217687
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis.
    Méndez-Vigo B; Savic M; Ausín I; Ramiro M; Martín B; Picó FX; Alonso-Blanco C
    Plant Cell Environ; 2016 Feb; 39(2):282-94. PubMed ID: 26173848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Elevated CO2 induces physiological, biochemical and structural changes in leaves of Arabidopsis thaliana.
    Teng N; Wang J; Chen T; Wu X; Wang Y; Lin J
    New Phytol; 2006; 172(1):92-103. PubMed ID: 16945092
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 × temperature interaction.
    Wang DR; Bunce JA; Tomecek MB; Gealy D; McClung A; McCouch SR; Ziska LH
    Glob Chang Biol; 2016 Jul; 22(7):2620-32. PubMed ID: 26959982
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Transcriptional variation in response to salt stress in commonly used Arabidopsis thaliana accessions.
    Chan Z; Loescher W; Grumet R
    Plant Physiol Biochem; 2013 Dec; 73():189-201. PubMed ID: 24140895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Natural variation involving deletion alleles of FRIGIDA modulate temperature-sensitive flowering responses in Arabidopsis thaliana.
    Sanchez-Bermejo E; Balasubramanian S
    Plant Cell Environ; 2016 Jun; 39(6):1353-65. PubMed ID: 26662639
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sagebrush carbon allocation patterns and grasshopper nutrition: the influence of CO
    Johnson RH; Lincoln DE
    Oecologia; 1991 Jun; 87(1):127-134. PubMed ID: 28313362
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Silver birch and climate change: variable growth and carbon allocation responses to elevated concentrations of carbon dioxide and ozone.
    Riikonen J; Lindsberg MM; Holopainen T; Oksanen E; Lappi J; Peltonen P; Vapaavuori E
    Tree Physiol; 2004 Nov; 24(11):1227-37. PubMed ID: 15339732
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of elevated carbon dioxide concentration on growth and nitrogen fixation in Alnus glutinosa in a long-term field experiment.
    Temperton VM; Grayston SJ; Jackson G; Barton CV; Millard P; Jarvis PG
    Tree Physiol; 2003 Oct; 23(15):1051-9. PubMed ID: 12975129
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance.
    Brosché M; Merilo E; Mayer F; Pechter P; Puzõrjova I; Brader G; Kangasjärvi J; Kollist H
    Plant Cell Environ; 2010 Jun; 33(6):914-25. PubMed ID: 20082669
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inter- and intra-generic differences in growth, reproduction, and fitness of nine herbaceous annual species grown in elevated CO
    Farnsworth EJ; Bazzaz FA
    Oecologia; 1995 Dec; 104(4):454-466. PubMed ID: 28307661
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stomatal function, density and pattern, and CO
    Vráblová M; Vrábl D; Hronková M; Kubásek J; Šantrůček J
    Plant Biol (Stuttg); 2017 Sep; 19(5):689-701. PubMed ID: 28453883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Patterns of univariate and multivariate plasticity to elevated carbon dioxide in six European populations of
    Jonas M; Cioce B
    Ecol Evol; 2019 May; 9(10):5906-5915. PubMed ID: 31161007
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasticity in metabolism underpins local responses to nitrogen in
    Pandey PK; Yu J; Omranian N; Alseekh S; Vaid N; Fernie AR; Nikoloski Z; Laitinen RAE
    Plant Direct; 2019 Nov; 3(11):e00186. PubMed ID: 31799492
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phenotypic variation of a new synthetic allotetraploid
    Shimizu-Inatsugi R; Morishima A; Mourato B; Shimizu KK; Sato Y
    Front Plant Sci; 2022; 13():1058522. PubMed ID: 36684772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.