These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33817465)

  • 1. Dissolution Kinetics of a BCS Class II Active Pharmaceutical Ingredient: Diffusion-Based Model Validation and Prediction.
    Gao Y; Glennon B; He Y; Donnellan P
    ACS Omega; 2021 Mar; 6(12):8056-8067. PubMed ID: 33817465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixing-tank model for predicting dissolution rate control or oral absorption.
    Dressman JB; Fleisher D
    J Pharm Sci; 1986 Feb; 75(2):109-16. PubMed ID: 3958917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution modeling: factors affecting the dissolution rates of polydisperse powders.
    Lu AT; Frisella ME; Johnson KC
    Pharm Res; 1993 Sep; 10(9):1308-14. PubMed ID: 8234168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Refined Thin-Film Model for Drug Dissolution Considering Radial Diffusion - Simulating Powder Dissolution.
    Salish K; So C; Jeong SH; Hou HH; Mao C
    Pharm Res; 2024 May; 41(5):947-958. PubMed ID: 38589647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A modified approach to predict dissolution and absorption of polydisperse powders.
    Butcher JC; Garg S; Kim D; Sharma P
    Pharm Res; 2008 Oct; 25(10):2309-11. PubMed ID: 18523873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Drug Dissolution in 3-Dimensional Space.
    So C; Chiang PC; Mao C
    Pharm Res; 2022 May; 39(5):907-917. PubMed ID: 35474157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. General solution for diffusion-controlled dissolution of spherical particles. 1. Theory.
    Wang J; Flanagan DR
    J Pharm Sci; 1999 Jul; 88(7):731-8. PubMed ID: 10393573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental determination of the diffusion boundary layer width of micron and submicron particles.
    Galli C
    Int J Pharm; 2006 Apr; 313(1-2):114-22. PubMed ID: 16529883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolution characteristics of cylindrical particles and tablets.
    Fukunaka T; Yaegashi Y; Nunoko T; Ito R; Golman B; Shinohara K
    Int J Pharm; 2006 Mar; 310(1-2):146-53. PubMed ID: 16414218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data.
    Wang J; Flanagan DR
    J Pharm Sci; 2002 Feb; 91(2):534-42. PubMed ID: 11835211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new modelling approach for dissolution of polydisperse powders.
    van der Zwaan I; Frenning G
    Int J Pharm; 2023 Feb; 633():122626. PubMed ID: 36690125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle Size, Dose, and Confinement Affect Passive Diffusion Flux through the Membrane Concentration Boundary Layer.
    Sinko PD; Salehi N; Halseth T; Meyer PJ; Amidon GL; Ziff RM; Amidon GE
    Mol Pharm; 2024 Jan; 21(1):201-215. PubMed ID: 38115627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Analysis of Drug Dissolution: I. Solubility and Intrinsic Dissolution Rate.
    Shekunov B; Montgomery ER
    J Pharm Sci; 2016 Sep; 105(9):2685-2697. PubMed ID: 26906172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of diffusion layer pH and solubility on the dissolution rate of pharmaceutical acids and their sodium salts. II: Salicylic acid, theophylline, and benzoic acid.
    Serajuddin AT; Jarowski CI
    J Pharm Sci; 1985 Feb; 74(2):148-54. PubMed ID: 3989683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new approach in the prediction of the dissolution behavior of suspended particles by means of their particle size distribution.
    Tinke AP; Vanhoutte K; De Maesschalck R; Verheyen S; De Winter H
    J Pharm Biomed Anal; 2005 Oct; 39(5):900-7. PubMed ID: 16023816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling dissolution of sparingly soluble multisized powders.
    de Almeida LP; Simöes S; Brito P; Portugal A; Figueiredo M
    J Pharm Sci; 1997 Jun; 86(6):726-32. PubMed ID: 9188056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical-empirical analysis on the initial dissolution rate of drugs from polydispersed particles.
    Takano R; Takata N; Shiraki K; Higo S; Hayashi Y; Yamashita S
    Biol Pharm Bull; 2009 Nov; 32(11):1885-91. PubMed ID: 19881303
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.
    Hirai D; Iwao Y; Kimura SI; Noguchi S; Itai S
    Int J Pharm; 2017 Apr; 522(1-2):58-65. PubMed ID: 28235625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution and coarsening of polydisperse, polymorph drug particles liberated from a disintegrating finished dosage form: Theoretical considerations.
    Horkovics-Kovats S
    Eur J Pharm Sci; 2016 Aug; 91():265-77. PubMed ID: 27155254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.