These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33817909)

  • 41. Inhibiting nitric oxide overproduction during hypotensive sepsis increases local oxygen consumption in rat skeletal muscle.
    Bateman RM; Sharpe MD; Goldman D; Lidington D; Ellis CG
    Crit Care Med; 2008 Jan; 36(1):225-31. PubMed ID: 18090362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of hemodilution on RBC velocity, supply rate, and hematocrit in the cerebral capillary network.
    Hudetz AG; Wood JD; Biswal BB; Krolo I; Kampine JP
    J Appl Physiol (1985); 1999 Aug; 87(2):505-9. PubMed ID: 10444605
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Video microscopy of cerebrocortical capillary flow: response to hypotension and intracranial hypertension.
    Hudetz AG; Fehér G; Weigle CG; Knuese DE; Kampine JP
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2202-10. PubMed ID: 7611470
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Skeletal muscle microvascular recruitment by physiological hyperinsulinemia precedes increases in total blood flow.
    Vincent MA; Dawson D; Clark AD; Lindner JR; Rattigan S; Clark MG; Barrett EJ
    Diabetes; 2002 Jan; 51(1):42-8. PubMed ID: 11756321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A streak length-based method for quantifying red blood cell flow in skeletal muscle arteriolar networks.
    Goldman D; Farid Z; Jackson DN
    Microcirculation; 2019 Jul; 26(5):e12532. PubMed ID: 30681226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies.
    Sové RJ; Fraser GM; Goldman D; Ellis CG
    PLoS One; 2016; 11(11):e0166289. PubMed ID: 27829071
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ischemia-reperfusion induced microvascular dysfunction in skeletal muscle: application of intravital video microscopy.
    Potter RF; Dietrich HH; Tyml K; Ellis CG; Cronkwright J; Groom AC
    Int J Microcirc Clin Exp; 1993 Dec; 13(3):173-86. PubMed ID: 8125707
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Localized Oxygen Exchange Platform for Intravital Video Microscopy Investigations of Microvascular Oxygen Regulation.
    Sové RJ; Milkovich S; Nikolov HN; Holdsworth DW; Ellis CG; Fraser GM
    Front Physiol; 2021; 12():654928. PubMed ID: 34168569
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distribution of red blood cell velocity in capillary network, and endothelial ultrastructure, in aged rat skeletal muscle.
    Tyml K; Mathieu-Costello O; Budreau CH
    Microvasc Res; 1992 Jul; 44(1):1-13. PubMed ID: 1640874
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Erythrocyte deformability is a nitric oxide-mediated factor in decreased capillary density during sepsis.
    Bateman RM; Jagger JE; Sharpe MD; Ellsworth ML; Mehta S; Ellis CG
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2848-56. PubMed ID: 11356644
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of mannitol versus dimethyl thiourea at attenuating ischemia/reperfusion-induced injury to skeletal muscle.
    Schlag MG; Clarke S; Carson MW; Harris KA; Potter RF
    J Vasc Surg; 1999 Mar; 29(3):511-21. PubMed ID: 10069916
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of a maldistribution of microvascular blood flow on capillary O(2) extraction in sepsis.
    Ellis CG; Bateman RM; Sharpe MD; Sibbald WJ; Gill R
    Am J Physiol Heart Circ Physiol; 2002 Jan; 282(1):H156-64. PubMed ID: 11748059
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optical method to determine in vivo capillary hematocrit, hemoglobin concentration, and 3-D network geometry in skeletal muscle.
    Christie JR; Kong I; Mawdsley L; Milkovich S; Doornekamp A; Baek J; Fraser GM; Ellis CG; Sové RJ
    Microcirculation; 2022 Oct; 29(6-7):e12751. PubMed ID: 35146836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Microvascular blood flow distribution in skeletal muscle. An intravital microscopic study in the rabbit.
    Lindbom L
    Acta Physiol Scand Suppl; 1983; 525():1-40. PubMed ID: 6588730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Differential microvascular response to disuse in rat hindlimb skeletal muscles.
    Tyml K; Mathieu-Costello O; Cheng L; Noble EG
    J Appl Physiol (1985); 1999 Oct; 87(4):1496-505. PubMed ID: 10517784
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantification of erythrocyte flow in the choroid of the albino rat.
    Braun RD; Dewhirst MW; Hatchell DL
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1444-53. PubMed ID: 9087623
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Remodeling in the microcirculation of rat skeletal muscle during chronic ischemia.
    Brown MD; Kent J; Kelsall CJ; Milkiewicz M; Hudlicka O
    Microcirculation; 2003 Apr; 10(2):179-91. PubMed ID: 12700586
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Acute effects of N-acetylcysteine on skeletal muscle microcirculation following closed soft tissue trauma in rats.
    Schaser KD; Bail HJ; Schewior L; Stover JF; Melcher I; Haas NP; Mittlmeier T
    J Orthop Res; 2005 Jan; 23(1):231-41. PubMed ID: 15607898
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of isovolemic hemodilution on microvascular perfusion in rat skeletal muscle during a low flow state.
    Tyml K; Budreau CH
    Int J Microcirc Clin Exp; 1992 May; 11(2):133-42. PubMed ID: 1612827
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Immediate microcirculatory derangements in skeletal muscle and periosteum after closed tibial fracture.
    Zhang L; Bail H; Mittlmeier T; Haas NP; Schaser KD
    J Trauma; 2003 May; 54(5):979-85. PubMed ID: 12777913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.