These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

364 related articles for article (PubMed ID: 33818220)

  • 1. Comparative performance analysis of support vector regression and artificial neural network for prediction of municipal solid waste generation.
    Jassim MS; Coskuner G; Zontul M
    Waste Manag Res; 2022 Feb; 40(2):195-204. PubMed ID: 33818220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of artificial intelligence neural network modeling to predict the generation of domestic, commercial and construction wastes.
    Coskuner G; Jassim MS; Zontul M; Karateke S
    Waste Manag Res; 2021 Mar; 39(3):499-507. PubMed ID: 32586206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
    Abbasi M; El Hanandeh A
    Waste Manag; 2016 Oct; 56():13-22. PubMed ID: 27297046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leachate generation rate modeling using artificial intelligence algorithms aided by input optimization method for an MSW landfill.
    Abunama T; Othman F; Ansari M; El-Shafie A
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3368-3381. PubMed ID: 30511225
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of municipal solid waste generation using nonlinear autoregressive network.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; Maulud KN
    Environ Monit Assess; 2015 Dec; 187(12):753. PubMed ID: 26573690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Municipal solid waste management for low-carbon transition: A systematic review of artificial neural network applications for trend prediction.
    Hoy ZX; Phuang ZX; Farooque AA; Fan YV; Woon KS
    Environ Pollut; 2024 Mar; 344():123386. PubMed ID: 38242306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis.
    Adamović VM; Antanasijević DZ; Ristić MĐ; Perić-Grujić AA; Pocajt VV
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):299-311. PubMed ID: 27718111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimation of municipal waste generation of Turkey using socio-economic indicators by Bayesian optimization tuned Gaussian process regression.
    Ceylan Z
    Waste Manag Res; 2020 Aug; 38(8):840-850. PubMed ID: 32122291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches.
    Kannangara M; Dua R; Ahmadi L; Bensebaa F
    Waste Manag; 2018 Apr; 74():3-15. PubMed ID: 29221873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Verifying the performance of artificial neural network and multiple linear regression in predicting the mean seasonal municipal solid waste generation rate: A case study of Fars province, Iran.
    Azadi S; Karimi-Jashni A
    Waste Manag; 2016 Feb; 48():14-23. PubMed ID: 26482809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine-learning approaches in geo-environmental engineering: Exploring smart solid waste management.
    Lakhouit A; Shaban M; Alatawi A; Abbas SYH; Asiri E; Al Juhni T; Elsawy M
    J Environ Manage; 2023 Mar; 330():117174. PubMed ID: 36586367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the capability of municipal solid waste separation in China based on AHP-EWM and BP neural network.
    Xi H; Li Z; Han J; Shen D; Li N; Long Y; Chen Z; Xu L; Zhang X; Niu D; Liu H
    Waste Manag; 2022 Feb; 139():208-216. PubMed ID: 34974315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities.
    Solano Meza JK; Orjuela Yepes D; Rodrigo-Ilarri J; Rodrigo-Clavero ME
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36901265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Machine Learning Model for Prediction of Demolition Waste Generation Rate of Buildings in Redevelopment Areas.
    Cha GW; Choi SH; Hong WH; Park CW
    Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights into regional differences of the predictions of municipal solid waste generation rates using artificial neural networks.
    Wu F; Niu D; Dai S; Wu B
    Waste Manag; 2020 Apr; 107():182-190. PubMed ID: 32299033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying artificial neural networks (ANNs) to solve solid waste-related issues: A critical review.
    Xu A; Chang H; Xu Y; Li R; Li X; Zhao Y
    Waste Manag; 2021 Apr; 124():385-402. PubMed ID: 33662770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exergetic performance prediction of solar air heater using MLP, GRNN and RBF models of artificial neural network technique.
    Ghritlahre HK; Prasad RK
    J Environ Manage; 2018 Oct; 223():566-575. PubMed ID: 29975883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of artificial neural networks for predicting the physical composition of municipal solid waste: An assessment of the impact of seasonal variation.
    Adeleke O; Akinlabi SA; Jen TC; Dunmade I
    Waste Manag Res; 2021 Aug; 39(8):1058-1068. PubMed ID: 33596781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models.
    Sunayana ; Kumar S; Kumar R
    Waste Manag; 2021 Feb; 121():206-214. PubMed ID: 33360819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of 11 non-linear regression models highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in soybean branching prediction.
    Zhou W; Yan Z; Zhang L
    Sci Rep; 2024 Mar; 14(1):5905. PubMed ID: 38467662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.