BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 33818773)

  • 1. Heat stress response mechanisms in pollen development.
    Chaturvedi P; Wiese AJ; Ghatak A; Záveská Drábková L; Weckwerth W; Honys D
    New Phytol; 2021 Jul; 231(2):571-585. PubMed ID: 33818773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement.
    Zenda T; Wang N; Dong A; Zhou Y; Duan H
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermosensitivity of pollen: a molecular perspective.
    Goel K; Kundu P; Sharma P; Zinta G
    Plant Cell Rep; 2023 May; 42(5):843-857. PubMed ID: 37029819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat stress regimes for the investigation of pollen thermotolerance in crop plants.
    Mesihovic A; Iannacone R; Firon N; Fragkostefanakis S
    Plant Reprod; 2016 Jun; 29(1-2):93-105. PubMed ID: 27016360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance.
    Bokszczanin KL; ; Fragkostefanakis S
    Front Plant Sci; 2013; 4():315. PubMed ID: 23986766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and Molecular Approaches for Developing Thermotolerance in Vegetable Crops: A Growth, Yield and Sustenance Perspective.
    Chaudhary S; Devi P; HanumanthaRao B; Jha UC; Sharma KD; Prasad PVV; Kumar S; Siddique KHM; Nayyar H
    Front Plant Sci; 2022; 13():878498. PubMed ID: 35837452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chickpea tolerance to temperature stress: Status and opportunity for improvement.
    Jeffrey C; Trethowan R; Kaiser B
    J Plant Physiol; 2021 Dec; 267():153555. PubMed ID: 34739858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and genetic characterization of heat stress effects in a common bean RIL population.
    Vargas Y; Mayor-Duran VM; Buendia HF; Ruiz-Guzman H; Raatz B
    PLoS One; 2021; 16(4):e0249859. PubMed ID: 33914759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unfolded protein response in pollen development and heat stress tolerance.
    Fragkostefanakis S; Mesihovic A; Hu Y; Schleiff E
    Plant Reprod; 2016 Jun; 29(1-2):81-91. PubMed ID: 27022919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Characterization of Contrasting Genotypes/Cultivars for Developing Heat Tolerance in Agricultural Crops: Current Status and Prospects.
    Chaudhary S; Devi P; Bhardwaj A; Jha UC; Sharma KD; Prasad PVV; Siddique KHM; Bindumadhava H; Kumar S; Nayyar H
    Front Plant Sci; 2020; 11():587264. PubMed ID: 33193540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neglected other half - role of the pistil in plant heat stress responses.
    Wang Y; Impa SM; Sunkar R; Jagadish SVK
    Plant Cell Environ; 2021 Jul; 44(7):2200-2210. PubMed ID: 33866576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High temperature susceptibility of sexual reproduction in crop plants.
    Lohani N; Singh MB; Bhalla PL
    J Exp Bot; 2020 Jan; 71(2):555-568. PubMed ID: 31560053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars.
    Raza Q; Riaz A; Bashir K; Sabar M
    Plant Mol Biol; 2020 Sep; 104(1-2):97-112. PubMed ID: 32643113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives.
    Haider S; Iqbal J; Naseer S; Yaseen T; Shaukat M; Bibi H; Ahmad Y; Daud H; Abbasi NL; Mahmood T
    Plant Cell Rep; 2021 Dec; 40(12):2247-2271. PubMed ID: 33890138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance.
    Sita K; Sehgal A; HanumanthaRao B; Nair RM; Vara Prasad PV; Kumar S; Gaur PM; Farooq M; Siddique KHM; Varshney RK; Nayyar H
    Front Plant Sci; 2017; 8():1658. PubMed ID: 29123532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Heat stress and molecular mitigation approaches in orphan legume, Chickpea.
    Kumari P; Rastogi A; Yadav S
    Mol Biol Rep; 2020 Jun; 47(6):4659-4670. PubMed ID: 32133603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arabidopsis immune-associated nucleotide-binding genes repress heat tolerance at the reproductive stage by inhibiting the unfolded protein response and promoting cell death.
    Lu S; Zhu T; Wang Z; Luo L; Wang S; Lu M; Cui Y; Zou B; Hua J
    Mol Plant; 2021 Feb; 14(2):267-284. PubMed ID: 33221412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the molecular mechanism of anther development under abiotic stresses.
    Zhang Z; Hu M; Xu W; Wang Y; Huang K; Zhang C; Wen J
    Plant Mol Biol; 2021 Jan; 105(1-2):1-10. PubMed ID: 32930929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity.
    Janni M; Gullì M; Maestri E; Marmiroli M; Valliyodan B; Nguyen HT; Marmiroli N
    J Exp Bot; 2020 Jun; 71(13):3780-3802. PubMed ID: 31970395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the Mechanisms of Heat Priming and Thermotolerance in Tobacco Pollen.
    Mareri L; Faleri C; Aloisi I; Parrotta L; Del Duca S; Cai G
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.