These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 33818773)

  • 21. Reproductive heat tolerance in a Mojave Desert annual plant, Trianthema portulacastrum.
    Branch HA; Sage RF
    Am J Bot; 2018 Dec; 105(12):2018-2024. PubMed ID: 30508226
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular insights into mechanisms underlying thermo-tolerance in tomato.
    Singh AK; Mishra P; Kashyap SP; Karkute SG; Singh PM; Rai N; Bahadur A; Behera TK
    Front Plant Sci; 2022; 13():1040532. PubMed ID: 36388532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PIF4 Promotes Expression of
    Yang J; Qu X; Ji L; Li G; Wang C; Wang C; Zhang Y; Zheng L; Li W; Zheng X
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682701
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Progress in Research on the Mechanisms Underlying Chloroplast-Involved Heat Tolerance in Plants.
    Zeng C; Jia T; Gu T; Su J; Hu X
    Genes (Basel); 2021 Aug; 12(9):. PubMed ID: 34573325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pollen thermotolerance of a widespread plant,
    Jackwerth K; Biella P; Klečka J
    PeerJ; 2024; 12():e17148. PubMed ID: 38708360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Securing reproductive function in mungbean grown under high temperature environment with exogenous application of proline.
    Priya M; Sharma L; Singh I; Bains TS; Siddique KHM; H B; Nair RM; Nayyar H
    Plant Physiol Biochem; 2019 Jul; 140():136-150. PubMed ID: 31103796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epigenetic events in plant male germ cell heat stress responses.
    Chen Y; Müller F; Rieu I; Winter P
    Plant Reprod; 2016 Jun; 29(1-2):21-9. PubMed ID: 26639000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced Reproductive Thermotolerance of the Tomato
    Rutley N; Miller G; Wang F; Harper JF; Miller G; Lieberman-Lazarovich M
    Front Plant Sci; 2021; 12():672368. PubMed ID: 34093629
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants.
    Raza A
    Plant Cell Rep; 2022 Mar; 41(3):741-763. PubMed ID: 33251564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The impact of heat stress in plant reproduction.
    Resentini F; Orozco-Arroyo G; Cucinotta M; Mendes MA
    Front Plant Sci; 2023; 14():1271644. PubMed ID: 38126016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Holistic insights from pollen omics: co-opting stress-responsive genes and ER-mediated proteostasis for male fertility.
    Sze H; Palanivelu R; Harper JF; Johnson MA
    Plant Physiol; 2021 Dec; 187(4):2361-2380. PubMed ID: 34601610
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving drought-, salinity-, and heat-tolerance in transgenic plants by co-overexpressing Arabidopsis vacuolar pyrophosphatase gene AVP1 and Larrea Rubisco activase gene RCA.
    Wijewardene I; Mishra N; Sun L; Smith J; Zhu X; Payton P; Shen G; Zhang H
    Plant Sci; 2020 Jul; 296():110499. PubMed ID: 32540017
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breeding for plant heat tolerance at vegetative and reproductive stages.
    Driedonks N; Rieu I; Vriezen WH
    Plant Reprod; 2016 Jun; 29(1-2):67-79. PubMed ID: 26874710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. GABA (γ-aminobutyric acid), as a thermo-protectant, to improve the reproductive function of heat-stressed mungbean plants.
    Priya M; Sharma L; Kaur R; Bindumadhava H; Nair RM; Siddique KHM; Nayyar H
    Sci Rep; 2019 May; 9(1):7788. PubMed ID: 31127130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ensuring Reproduction at High Temperatures: The Heat Stress Response during Anther and Pollen Development.
    Giorno F; Wolters-Arts M; Mariani C; Rieu I
    Plants (Basel); 2013 Jul; 2(3):489-506. PubMed ID: 27137389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proteomics of Heat-Stress and Ethylene-Mediated Thermotolerance Mechanisms in Tomato Pollen Grains.
    Jegadeesan S; Chaturvedi P; Ghatak A; Pressman E; Meir S; Faigenboim A; Rutley N; Beery A; Harel A; Weckwerth W; Firon N
    Front Plant Sci; 2018; 9():1558. PubMed ID: 30483278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pollen development in cotton (Gossypium hirsutum) is highly sensitive to heat exposure during the tetrad stage.
    Masoomi-Aladizgeh F; Najeeb U; Hamzelou S; Pascovici D; Amirkhani A; Tan DKY; Mirzaei M; Haynes PA; Atwell BJ
    Plant Cell Environ; 2021 Jul; 44(7):2150-2166. PubMed ID: 33047317
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contrasting processing tomato cultivars unlink yield and pollen viability under heat stress.
    Miller G; Beery A; Singh PK; Wang F; Zelingher R; Motenko E; Lieberman-Lazarovich M
    AoB Plants; 2021 Aug; 13(4):plab046. PubMed ID: 34394907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants.
    Hoshikawa K; Pham D; Ezura H; Schafleitner R; Nakashima K
    Front Plant Sci; 2021; 12():786688. PubMed ID: 35003175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterns of gene expression in pollen of cotton (Gossypium hirsutum) indicate downregulation as a feature of thermotolerance.
    Masoomi-Aladizgeh F; McKay MJ; Asar Y; Haynes PA; Atwell BJ
    Plant J; 2022 Feb; 109(4):965-979. PubMed ID: 34837283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.