These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 3381893)

  • 21. Role of CD11/CD18 in shear rate-dependent leukocyte-endothelial cell interactions in cat mesenteric venules.
    Perry MA; Granger DN
    J Clin Invest; 1991 May; 87(5):1798-804. PubMed ID: 1673690
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mathematical analysis of mural thrombogenesis. Concentration profiles of platelet-activating agents and effects of viscous shear flow.
    Folie BJ; McIntire LV
    Biophys J; 1989 Dec; 56(6):1121-41. PubMed ID: 2611327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Distribution of microvascular pressure in arteriolar vessel trees of ventilated rabbit lungs.
    Kuhnle GE; Pries AR; Goetz AE
    Am J Physiol; 1993 Nov; 265(5 Pt 2):H1510-5. PubMed ID: 8238562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate.
    Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P
    Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hemodynamics of thrombus formation in arteries.
    Ouriel K; Donayre C; Shortell CK; Cimino C; Donnelly J; Oxley D; Green RM
    J Vasc Surg; 1991 Dec; 14(6):757-62; discussion 762-3. PubMed ID: 1960805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Velocity pulse measurements in the mesenteric arterioles of rabbits.
    Koutsiaris AG; Pogiatzi A
    Physiol Meas; 2004 Feb; 25(1):15-25. PubMed ID: 15005301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular and rheological factors contributing to sickle cell microvascular occlusion.
    Kurantsin-Mills J; Lessin LS
    Blood Cells; 1986; 12(1):249-70. PubMed ID: 3790735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Microvascular Wall Shear Rate Function Derived From In Vivo Hemodynamic and Geometric Parameters in Continuously Branching Arterioles.
    Al-Khazraji BK; Jackson DN; Goldman D
    Microcirculation; 2016 May; 23(4):311-9. PubMed ID: 27018869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatial distribution of platelet deposition in stented arterial models under physiologic flow.
    Duraiswamy N; Jayachandran B; Byrne J; Moore JE; Schoephoerster RT
    Ann Biomed Eng; 2005 Dec; 33(12):1767-77. PubMed ID: 16389525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flow-pressure drop measurement and calculation in a tapered femoral artery of a dog.
    Banerjee RK; Back LH; Cho YI
    Biorheology; 1995; 32(6):655-84. PubMed ID: 8857355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Blood flow in single surface arterioles and venules on the mouse somatosensory cortex measured with videomicroscopy, fluorescent dextrans, nonoccluding fluorescent beads, and computer-assisted image analysis.
    Rovainen CM; Woolsey TA; Blocher NC; Wang DB; Robinson OF
    J Cereb Blood Flow Metab; 1993 May; 13(3):359-71. PubMed ID: 7683023
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of dextrans on platelet distribution in arterioles and venules.
    Woldhuis B; Tangelder GJ; Slaaf DW; Reneman RS
    Pflugers Arch; 1993 Nov; 425(3-4):191-8. PubMed ID: 7508595
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow pulsation and network structure in mesenteric microvasculature of rats.
    Seki J
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H811-21. PubMed ID: 8141382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diameter, wall tension, and flow in mesenteric arterioles during autoregulation.
    Burrows ME; Johnson PC
    Am J Physiol; 1981 Dec; 241(6):H829-37. PubMed ID: 7325251
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rate of decrease of PO2 from an arteriole with arrested flow.
    Pittman RN; Golub AS; Schleicher WF
    Adv Exp Med Biol; 2005; 566():257-62. PubMed ID: 16594160
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lateral migration of a capsule in a parabolic flow.
    Nix S; Imai Y; Ishikawa T
    J Biomech; 2016 Jul; 49(11):2249-2254. PubMed ID: 26674473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of blood flow on the leukocyte-endothelium interaction in pulmonary microvessels.
    Kuhnle GE; Kuebler WM; Groh J; Goetz AE
    Am J Respir Crit Care Med; 1995 Oct; 152(4 Pt 1):1221-8. PubMed ID: 7551374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pulsatile magneto-hydrodynamic blood flows through porous blood vessels using a third grade non-Newtonian fluids model.
    Akbarzadeh P
    Comput Methods Programs Biomed; 2016 Apr; 126():3-19. PubMed ID: 26792174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of pulsatile blood flow cycle in frog microvessels by image velocimetry.
    Singh SS; Singh M
    Med Biol Eng Comput; 2002 May; 40(3):269-72. PubMed ID: 12195971
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of neutrophils and endothelium in isolated coronary venules and arterioles.
    Yuan Y; Mier RA; Chilian WM; Zawieja DC; Granger HJ
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H490-8. PubMed ID: 7840298
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.