BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 33819007)

  • 1. Solid-State Precursor Impregnation for Enhanced Capacitance in Hierarchical Flexible Poly(3,4-Ethylenedioxythiophene) Supercapacitors.
    Wang H; Yang H; Diao Y; Lu Y; Chrulski K; D'Arcy JM
    ACS Nano; 2021 Apr; 15(4):7799-7810. PubMed ID: 33819007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors.
    Zhao X; Dong M; Zhang J; Li Y; Zhang Q
    Nanotechnology; 2016 Sep; 27(38):385705. PubMed ID: 27533130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible, Transparent and Highly Conductive Polymer Film Electrodes for All-Solid-State Transparent Supercapacitor Applications.
    Guan X; Pan L; Fan Z
    Membranes (Basel); 2021 Oct; 11(10):. PubMed ID: 34677554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Flexible All-Organic Conductors for Multifunctional Wearable Applications.
    Moon IK; Yoon S; Lee HU; Kim SW; Oh J
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40580-40592. PubMed ID: 29067808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High areal capacitance of vanadium oxides intercalated Ti
    Zhang Z; Guo M; Tang Y; Liu C; Zhou J; Yuan J; Gu J
    Nanotechnology; 2020 Apr; 31(16):165403. PubMed ID: 31891915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Core-Branch α-Fe
    Zhang M; Li X; Wang X; Li D; Zhao N
    Front Chem; 2019; 7():887. PubMed ID: 31970151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sandwich-like MXene/α-Fe
    Li C; Wang S; Cui Y; Wang X; Yong Z; Liang D; Chi Y; Wang Z
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9172-9182. PubMed ID: 35133136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated Carbon Nanotube Fiber Fabric as a High-Performance Flexible Electrode for Solid-State Supercapacitors.
    Liang Y; Luo X; Weng W; Hu Z; Zhang Y; Xu W; Bi Z; Zhu M
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28433-28441. PubMed ID: 34114814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Honeycomb-Lantern-Inspired 3D Stretchable Supercapacitors with Enhanced Specific Areal Capacitance.
    Lv Z; Tang Y; Zhu Z; Wei J; Li W; Xia H; Jiang Y; Liu Z; Luo Y; Ge X; Zhang Y; Wang R; Zhang W; Loh XJ; Chen X
    Adv Mater; 2018 Dec; 30(50):e1805468. PubMed ID: 30306649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh-Areal-Capacitance Flexible Supercapacitor Electrodes Enabled by Conformal P3MT on Horizontally Aligned Carbon-Nanotube Arrays.
    Zhou Y; Wang X; Acauan L; Kalfon-Cohen E; Ni X; Stein Y; Gleason KK; Wardle BL
    Adv Mater; 2019 Jul; 31(30):e1901916. PubMed ID: 31157472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manufacturing Shape-Controllable Flexible PEDOT/rGO Composite Electrodes for Planar Micro-Supercapacitors.
    Hu H; Guo Y; Zhao J
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paper-Derived Millimeter-Thick Yarn Supercapacitors Enabling High Volumetric Energy Density.
    Heo YJ; Lee JH; Kim SH; Mun SJ; Lee SY; Park SJ
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42671-42682. PubMed ID: 36043943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Standing Hydrogels Composed of Conducting Polymers for All-Hydrogel-State Supercapacitors.
    Yang Z; Shi D; Dong W; Chen M
    Chemistry; 2020 Feb; 26(8):1846-1855. PubMed ID: 31808206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-cost superior solid-state symmetric supercapacitors based on hematite nanocrystals.
    Peng S; Yu L; Lan B; Sun M; Cheng G; Liao S; Cao H; Deng Y
    Nanotechnology; 2016 Dec; 27(50):505404. PubMed ID: 27875337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible fiber-shaped supercapacitors based on graphene/polyaniline hybrid fibers with high energy density and capacitance.
    Wu Y; Meng Z; Yang J; Xue Y
    Nanotechnology; 2021 Apr; 32(29):. PubMed ID: 33831848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of NiO/Ni(OH)2/PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors.
    Yang H; Xu H; Li M; Zhang L; Huang Y; Hu X
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):1774-9. PubMed ID: 26709837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible quasi-solid-state zinc-ion hybrid supercapacitor based on carbon cloths displays ultrahigh areal capacitance.
    Zhang Y; Wang P; Dong X; Jiang H; Cui M; Meng C
    Fundam Res; 2023 Mar; 3(2):288-297. PubMed ID: 38932920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled high polypyrrole loading flexible paper-based electrodes for high-performance supercapacitors.
    Fan D; Fang Z; Xiong Z; Fu F; Qiu S; Yan M
    J Colloid Interface Sci; 2024 Apr; 660():555-564. PubMed ID: 38266337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron oxides nanobelt arrays rooted in nanoporous surface of carbon tube textile as stretchable and robust electrodes for flexible supercapacitors with ultrahigh areal energy density and remarkable cycling-stability.
    Ding Y; Tang S; Han R; Zhang S; Pan G; Meng X
    Sci Rep; 2020 Jul; 10(1):11023. PubMed ID: 32620806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.