These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33819039)

  • 1. Suppressing the Universal Occurrence of Microscopic Liquid Residues on Super-Liquid-Repellent Surfaces.
    Huang S; Li J; Chen L; Tian X
    J Phys Chem Lett; 2021 Apr; 12(14):3577-3585. PubMed ID: 33819039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lossless Fast Drop Self-Transport on Anisotropic Omniphobic Surfaces: Origin and Elimination of Microscopic Liquid Residue.
    Huang S; Li J; Liu L; Zhou L; Tian X
    Adv Mater; 2019 Jul; 31(27):e1901417. PubMed ID: 31069888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zipping effect on omniphobic surfaces for controlled deposition of minute amounts of fluid or colloids.
    Dufour R; Brunet P; Harnois M; Boukherroub R; Thomy V; Senez V
    Small; 2012 Apr; 8(8):1229-36. PubMed ID: 22337592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic liquid bridge breakup and liquid transfer between two surfaces.
    Chen H; Ponce-Torres A; Montanero JM; Amirfazli A
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):1251-1256. PubMed ID: 32957058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling the pinning time of a receding contact line under forced wetting conditions.
    Fernández-Toledano JC; Rigaut C; Mastrangeli M; De Coninck J
    J Colloid Interface Sci; 2020 Apr; 565():449-457. PubMed ID: 31982711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whether and When Superhydrophobic/Superoleophobic Surfaces Are Fingerprint Repellent.
    Wu C; Fan Y; Wang H; Li J; Chen Y; Wang Y; Liu L; Zhou L; Huang S; Tian X
    Research (Wash D C); 2022; 2022():9850316. PubMed ID: 36258844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Water Advances on Superhydrophobic Surfaces.
    Schellenberger F; Encinas N; Vollmer D; Butt HJ
    Phys Rev Lett; 2016 Mar; 116(9):096101. PubMed ID: 26991185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparisons of liquid and gaseous microdrops deposited on surfaces via a retreating tip.
    Huynh HS; Guan JP; Vuong T; Ng TW
    Langmuir; 2013 Sep; 29(37):11615-22. PubMed ID: 23924057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super liquid-repellent layers: The smaller the better.
    Butt HJ; Vollmer D; Papadopoulos P
    Adv Colloid Interface Sci; 2015 Aug; 222():104-9. PubMed ID: 24996450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capillary bridge formation and breakage: a test to characterize antiadhesive surfaces.
    Vagharchakian L; Restagno F; Léger L
    J Phys Chem B; 2009 Mar; 113(12):3769-75. PubMed ID: 19673068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Receding dynamics of contact lines and size-dependent adhesion on microstructured hydrophobic surfaces.
    Li D; Xue Y; Lv P; Huang S; Lin H; Duan H
    Soft Matter; 2016 May; 12(18):4257-65. PubMed ID: 27072295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear distortion and failure of capillary bridges. Wetting information beyond contact angle analysis.
    Wang L; McCarthy TJ
    Langmuir; 2013 Jun; 29(25):7776-81. PubMed ID: 23692651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contact angle hysteresis on superhydrophobic surfaces: an ionic liquid probe fluid offers mechanistic insight.
    Krumpfer JW; Bian P; Zheng P; Gao L; McCarthy TJ
    Langmuir; 2011 Mar; 27(6):2166-9. PubMed ID: 21271691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coatings super-repellent to ultralow surface tension liquids.
    Pan S; Guo R; Björnmalm M; Richardson JJ; Li L; Peng C; Bertleff-Zieschang N; Xu W; Jiang J; Caruso F
    Nat Mater; 2018 Nov; 17(11):1040-1047. PubMed ID: 30323333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contact Angle Determination on Hydrophilic and Superhydrophilic Surfaces by Using r-θ-Type Capillary Bridges.
    Nagy N
    Langmuir; 2019 Apr; 35(15):5202-5212. PubMed ID: 30916567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How pinning and contact angle hysteresis govern quasi-static liquid drop transfer.
    Chen H; Tang T; Zhao H; Law KY; Amirfazli A
    Soft Matter; 2016 Feb; 12(7):1998-2008. PubMed ID: 26777599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy Dissipation of Moving Drops on Superhydrophobic and Superoleophobic Surfaces.
    Butt HJ; Gao N; Papadopoulos P; Steffen W; Kappl M; Berger R
    Langmuir; 2017 Jan; 33(1):107-116. PubMed ID: 28001428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capillary Bridges on Hydrophobic Surfaces: Analytical Contact Angle Determination.
    Nagy N
    Langmuir; 2022 May; 38(19):6201-6208. PubMed ID: 35523001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces.
    Srinivasan S; McKinley GH; Cohen RE
    Langmuir; 2011 Nov; 27(22):13582-9. PubMed ID: 21923173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.