These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33819040)

  • 1. Catalytic Magnesium as a Door Stop for DNA Sliding.
    Wang H; Elber R
    J Phys Chem B; 2021 Apr; 125(14):3494-3500. PubMed ID: 33819040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substitutions at Phe61 in the beta3-beta4 hairpin of HIV-1 reverse transcriptase reveal a role for the Fingers subdomain in strand displacement DNA synthesis.
    Fisher TS; Darden T; Prasad VR
    J Mol Biol; 2003 Jan; 325(3):443-59. PubMed ID: 12498795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution.
    Ding J; Das K; Hsiou Y; Sarafianos SG; Clark AD; Jacobo-Molina A; Tantillo C; Hughes SH; Arnold E
    J Mol Biol; 1998 Dec; 284(4):1095-111. PubMed ID: 9837729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication.
    Herzig E; Voronin N; Kucherenko N; Hizi A
    J Virol; 2015 Aug; 89(16):8119-29. PubMed ID: 25995261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific incorporation of nucleoside analogs by HIV-1 reverse transcriptase and the template grip mutant P157S. Template interactions influence substrate recognition at the polymerase active site.
    Klarmann GJ; Smith RA; Schinazi RF; North TW; Preston BD
    J Biol Chem; 2000 Jan; 275(1):359-66. PubMed ID: 10617626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slide into action: dynamic shuttling of HIV reverse transcriptase on nucleic acid substrates.
    Liu S; Abbondanzieri EA; Rausch JW; Le Grice SF; Zhuang X
    Science; 2008 Nov; 322(5904):1092-7. PubMed ID: 19008444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNase H requirements for the second strand transfer reaction of human immunodeficiency virus type 1 reverse transcription.
    Smith CM; Smith JS; Roth MJ
    J Virol; 1999 Aug; 73(8):6573-81. PubMed ID: 10400754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase.
    Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E
    Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Process of HIV-1 reverse transcription and its detection by using PCR].
    Yao WX; Wu YL; Guo Y
    Yao Xue Xue Bao; 2008 Feb; 43(2):118-22. PubMed ID: 18507335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human immunodeficiency virus 1 reverse transcriptase. Template binding, processivity, strand displacement synthesis, and template switching.
    Huber HE; McCoy JM; Seehra JS; Richardson CC
    J Biol Chem; 1989 Mar; 264(8):4669-78. PubMed ID: 2466838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of nucleotides and nucleotide analogue inhibitors of HIV-1 reverse transcriptase in a ratchet model of polymerase translocation.
    Götte M
    Curr Pharm Des; 2006; 12(15):1867-77. PubMed ID: 16724953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitors of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase.
    Gabbara S; Davis WR; Hupe L; Hupe D; Peliska JA
    Biochemistry; 1999 Oct; 38(40):13070-6. PubMed ID: 10529177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of HIV-1 reverse transcriptase cleaving RNA in an RNA/DNA hybrid.
    Tian L; Kim MS; Li H; Wang J; Yang W
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):507-512. PubMed ID: 29295939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational States of HIV-1 Reverse Transcriptase for Nucleotide Incorporation vs Pyrophosphorolysis-Binding of Foscarnet.
    Das K; Balzarini J; Miller MT; Maguire AR; DeStefano JJ; Arnold E
    ACS Chem Biol; 2016 Aug; 11(8):2158-64. PubMed ID: 27192549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single unpaired nucleotides facilitate HIV-1 reverse transcriptase displacement synthesis through duplex RNA.
    Lanciault C; Champoux JJ
    J Biol Chem; 2004 Jul; 279(31):32252-61. PubMed ID: 15169769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide excision repair and template-independent addition by HIV-1 reverse transcriptase in the presence of nucleocapsid protein.
    Bampi C; Bibillo A; Wendeler M; Divita G; Gorelick RJ; Le Grice SF; Darlix JL
    J Biol Chem; 2006 Apr; 281(17):11736-43. PubMed ID: 16500895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase: evidence of discrimination between DNA and RNA substrates.
    Kerr SG; Anderson KS
    Biochemistry; 1997 Nov; 36(46):14056-63. PubMed ID: 9369477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of template RNA structure on elongation by HIV-1 reverse transcriptase.
    Klasens BI; Huthoff HT; Das AT; Jeeninga RE; Berkhout B
    Biochim Biophys Acta; 1999 Mar; 1444(3):355-70. PubMed ID: 10095059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination between the polymerase and RNase H activity of HIV-1 reverse transcriptase.
    Figiel M; Krepl M; Poznanski J; Golab A; Šponer J; Nowotny M
    Nucleic Acids Res; 2017 Apr; 45(6):3341-3352. PubMed ID: 28108662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.