These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 33819276)

  • 61. Nonparametric inference of complier quantile treatment effects in randomized trials with imperfect compliance.
    Mao L
    Biostat Epidemiol; 2022; 6(2):249-265. PubMed ID: 37551295
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The impact of unmeasured within- and between-cluster confounding on the bias of effect estimatorsof a continuous exposure.
    Li Y; Lee Y; Port FK; Robinson BM
    Stat Methods Med Res; 2020 Aug; 29(8):2119-2139. PubMed ID: 31694489
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Doubly robust matching estimators for high dimensional confounding adjustment.
    Antonelli J; Cefalu M; Palmer N; Agniel D
    Biometrics; 2018 Dec; 74(4):1171-1179. PubMed ID: 29750844
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Addressing unmeasured confounders in cohort studies: Instrumental variable method for a time-fixed exposure on an outcome trajectory.
    Le Bourdonnec K; Samieri C; Tzourio C; Mura T; Mishra A; Trégouët DA; Proust-Lima C
    Biom J; 2024 Jan; 66(1):e2200358. PubMed ID: 38098309
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Assessing the impact of unmeasured confounders for credible and reliable real-world evidence.
    Zhang X; Stamey JD; Mathur MB
    Pharmacoepidemiol Drug Saf; 2020 Oct; 29(10):1219-1227. PubMed ID: 32929830
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Propensity Score-Based Estimators With Multiple Error-Prone Covariates.
    Hong H; Aaby DA; Siddique J; Stuart EA
    Am J Epidemiol; 2019 Jan; 188(1):222-230. PubMed ID: 30358801
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Sample size importantly limits the usefulness of instrumental variable methods, depending on instrument strength and level of confounding.
    Boef AG; Dekkers OM; Vandenbroucke JP; le Cessie S
    J Clin Epidemiol; 2014 Nov; 67(11):1258-64. PubMed ID: 25124167
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Tuning Random Forests for Causal Inference under Cluster-Level Unmeasured Confounding.
    Suk Y; Kang H
    Multivariate Behav Res; 2023; 58(2):408-440. PubMed ID: 35103508
    [TBL] [Abstract][Full Text] [Related]  

  • 69. RKHS-based covariate balancing for survival causal effect estimation.
    Xue W; Zhang X; Chan KCG; Wong RKW
    Lifetime Data Anal; 2024 Jan; 30(1):34-58. PubMed ID: 36821062
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Propensity score analysis with partially observed covariates: How should multiple imputation be used?
    Leyrat C; Seaman SR; White IR; Douglas I; Smeeth L; Kim J; Resche-Rigon M; Carpenter JR; Williamson EJ
    Stat Methods Med Res; 2019 Jan; 28(1):3-19. PubMed ID: 28573919
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Targeted estimation of nuisance parameters to obtain valid statistical inference.
    van der Laan MJ
    Int J Biostat; 2014; 10(1):29-57. PubMed ID: 24516006
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Instrumental variables I: instrumental variables exploit natural variation in nonexperimental data to estimate causal relationships.
    Rassen JA; Brookhart MA; Glynn RJ; Mittleman MA; Schneeweiss S
    J Clin Epidemiol; 2009 Dec; 62(12):1226-32. PubMed ID: 19356901
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Propensity score weighting analysis and treatment effect discovery.
    Mao H; Li L; Greene T
    Stat Methods Med Res; 2019 Aug; 28(8):2439-2454. PubMed ID: 29921162
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Propensity score weighting for causal subgroup analysis.
    Yang S; Lorenzi E; Papadogeorgou G; Wojdyla DM; Li F; Thomas LE
    Stat Med; 2021 Aug; 40(19):4294-4309. PubMed ID: 33982316
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Relaxed covariate overlap and margin-based causal effect estimation.
    Ghosh D
    Stat Med; 2018 Dec; 37(28):4252-4265. PubMed ID: 30168168
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Doubly robust estimation of causal effects.
    Funk MJ; Westreich D; Wiesen C; Stürmer T; Brookhart MA; Davidian M
    Am J Epidemiol; 2011 Apr; 173(7):761-7. PubMed ID: 21385832
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Apples and oranges? Interpretations of risk adjustment and instrumental variable estimates of intended treatment effects using observational data.
    Fang G; Brooks JM; Chrischilles EA
    Am J Epidemiol; 2012 Jan; 175(1):60-5. PubMed ID: 22085626
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Formulating causal questions and principled statistical answers.
    Goetghebeur E; le Cessie S; De Stavola B; Moodie EE; Waernbaum I;
    Stat Med; 2020 Dec; 39(30):4922-4948. PubMed ID: 32964526
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Instrumental Variable Analyses and Selection Bias.
    Canan C; Lesko C; Lau B
    Epidemiology; 2017 May; 28(3):396-398. PubMed ID: 28169934
    [TBL] [Abstract][Full Text] [Related]  

  • 80. How to compare instrumental variable and conventional regression analyses using negative controls and bias plots.
    Davies NM; Thomas KH; Taylor AE; Taylor GMJ; Martin RM; Munafò MR; Windmeijer F
    Int J Epidemiol; 2017 Dec; 46(6):2067-2077. PubMed ID: 28398582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.