These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 33819575)
21. Legacy brominated flame retardants in human milk from the general population in Beijing, China: Biomonitoring, temporal trends from 2011 to 2018, and nursing infant's exposure assessment. Zhao X; Shi Z Chemosphere; 2021 Dec; 285():131533. PubMed ID: 34273701 [TBL] [Abstract][Full Text] [Related]
22. Levels and distributions of polybrominated diphenyl ethers, hexabromocyclododecane, and tetrabromobisphenol A in sediments from Taihu Lake, China. Wang J; Jia X; Gao S; Zeng X; Li H; Zhou Z; Sheng G; Yu Z Environ Sci Pollut Res Int; 2016 Jun; 23(11):10361-10370. PubMed ID: 26490922 [TBL] [Abstract][Full Text] [Related]
23. Organophosphate flame retardants, tetrabromobisphenol A, and their transformation products in sediment of e-waste dismantling areas and the flame-retardant production base. Chen P; Ma S; Yang Y; Qi Z; Wang Y; Li G; Tang J; Yu Y Ecotoxicol Environ Saf; 2021 Dec; 225():112717. PubMed ID: 34478981 [TBL] [Abstract][Full Text] [Related]
24. Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide. Sharkey M; Harrad S; Abou-Elwafa Abdallah M; Drage DS; Berresheim H Environ Int; 2020 Nov; 144():106041. PubMed ID: 32822924 [TBL] [Abstract][Full Text] [Related]
25. Brominated and organophosphate flame retardants target different neurodevelopmental stages, characterized with embryonic neural stem cells and neuronotypic PC12 cells. Slotkin TA; Skavicus S; Stapleton HM; Seidler FJ Toxicology; 2017 Sep; 390():32-42. PubMed ID: 28851516 [TBL] [Abstract][Full Text] [Related]
26. Legacy and novel brominated flame retardants in interior car dust - Implications for human exposure. Besis A; Christia C; Poma G; Covaci A; Samara C Environ Pollut; 2017 Nov; 230():871-881. PubMed ID: 28735244 [TBL] [Abstract][Full Text] [Related]
27. Currently used organophosphate and brominated flame retardants in the environment of China and other developing countries (2000-2016). Ali N; Shahzad K; Rashid MI; Shen H; Ismail IMI; Eqani SAMAS Environ Sci Pollut Res Int; 2017 Aug; 24(23):18721-18741. PubMed ID: 28620860 [TBL] [Abstract][Full Text] [Related]
28. Halogenated flame retardants in bobcats from the midwestern United States. Boyles E; Tan H; Wu Y; Nielsen CK; Shen L; Reiner EJ; Chen D Environ Pollut; 2017 Feb; 221():191-198. PubMed ID: 27989386 [TBL] [Abstract][Full Text] [Related]
29. Brominated flame retardants: cause for concern? Birnbaum LS; Staskal DF Environ Health Perspect; 2004 Jan; 112(1):9-17. PubMed ID: 14698924 [TBL] [Abstract][Full Text] [Related]
30. Editor's Highlight: Comparative Toxicity of Organophosphate Flame Retardants and Polybrominated Diphenyl Ethers to Caenorhabditis elegans. Behl M; Rice JR; Smith MV; Co CA; Bridge MF; Hsieh JH; Freedman JH; Boyd WA Toxicol Sci; 2016 Dec; 154(2):241-252. PubMed ID: 27566445 [TBL] [Abstract][Full Text] [Related]
31. Differences in neonatal neurotoxicity of brominated flame retardants, PBDE 99 and TBBPA, in mice. Viberg H; Eriksson P Toxicology; 2011 Oct; 289(1):59-65. PubMed ID: 21820030 [TBL] [Abstract][Full Text] [Related]
32. Spatial distribution, source identification, and anthropogenic effects of brominated flame retardants in nationwide soil collected from South Korea. Jeon JW; Kim CS; Kim HJ; Lee CH; Hwang SM; Choi SD Environ Pollut; 2021 Mar; 272():116026. PubMed ID: 33218769 [TBL] [Abstract][Full Text] [Related]
33. Dietary exposure assessment of Chinese population to tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether: Results of the 5th Chinese Total Diet Study. Shi Z; Zhang L; Zhao Y; Sun Z; Zhou X; Li J; Wu Y Environ Pollut; 2017 Oct; 229():539-547. PubMed ID: 28688304 [TBL] [Abstract][Full Text] [Related]
35. Gestational and Lactational Exposure to an Environmentally-Relevant Mixture of Brominated Flame Retardants: Effects on Neurodevelopment and Metabolism. Tung EWY; Kawata A; Rigden M; Bowers WJ; Caldwell D; Holloway AC; Robaire B; Hales BF; Wade MG Birth Defects Res; 2017 Apr; 109(7):497-512. PubMed ID: 28398660 [TBL] [Abstract][Full Text] [Related]
36. Halogenated flame retardants and organophosphate esters in the air of electronic waste recycling facilities: Evidence of high concentrations and multiple exposures. Gravel S; Lavoué J; Bakhiyi B; Diamond ML; Jantunen LM; Lavoie J; Roberge B; Verner MA; Zayed J; Labrèche F Environ Int; 2019 Jul; 128():244-253. PubMed ID: 31059919 [TBL] [Abstract][Full Text] [Related]
37. A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China: Occurrence and exposure assessment. Shi Z; Zhang L; Zhao Y; Sun Z; Zhou X; Li J; Wu Y Sci Total Environ; 2017 Dec; 599-600():237-245. PubMed ID: 28477480 [TBL] [Abstract][Full Text] [Related]
38. Concentrations and loadings of organophosphate and replacement brominated flame retardants in house dust from the home study during the PBDE phase-out. Percy Z; La Guardia MJ; Xu Y; Hale RC; Dietrich KN; Lanphear BP; Yolton K; Vuong AM; Cecil KM; Braun JM; Xie C; Chen A Chemosphere; 2020 Jan; 239():124701. PubMed ID: 31499316 [TBL] [Abstract][Full Text] [Related]
39. Global Atmospheric Concentrations of Brominated and Chlorinated Flame Retardants and Organophosphate Esters. Rauert C; Schuster JK; Eng A; Harner T Environ Sci Technol; 2018 Mar; 52(5):2777-2789. PubMed ID: 29406704 [TBL] [Abstract][Full Text] [Related]
40. Analysis of brominated flame retardants in house dust. Abb M; Stahl B; Lorenz W Chemosphere; 2011 Dec; 85(11):1657-63. PubMed ID: 21724229 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]