BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33819634)

  • 1. Crystallographic analysis of TarI and TarJ, a cytidylyltransferase and reductase pair for CDP-ribitol synthesis in Staphylococcus aureus wall teichoic acid biogenesis.
    Li FKK; Gale RT; Petrotchenko EV; Borchers CH; Brown ED; Strynadka NCJ
    J Struct Biol; 2021 Jun; 213(2):107733. PubMed ID: 33819634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifunctional catalysis by CDP-ribitol synthase: convergent recruitment of reductase and cytidylyltransferase activities in Haemophilus influenzae and Staphylococcus aureus.
    Pereira MP; Brown ED
    Biochemistry; 2004 Sep; 43(37):11802-12. PubMed ID: 15362865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of CDP-activated ribitol for teichoic acid precursors in Streptococcus pneumoniae.
    Baur S; Marles-Wright J; Buckenmaier S; Lewis RJ; Vollmer W
    J Bacteriol; 2009 Feb; 191(4):1200-10. PubMed ID: 19074383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Duplication of teichoic acid biosynthetic genes in Staphylococcus aureus leads to functionally redundant poly(ribitol phosphate) polymerases.
    Pereira MP; D'Elia MA; Troczynska J; Brown ED
    J Bacteriol; 2008 Aug; 190(16):5642-9. PubMed ID: 18556787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic characterization of ribitol teichoic acid synthesis in Staphylococcus aureus: genes, genomic organization and gene duplication.
    Qian Z; Yin Y; Zhang Y; Lu L; Li Y; Jiang Y
    BMC Genomics; 2006 Apr; 7():74. PubMed ID: 16595020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.
    Meredith TC; Swoboda JG; Walker S
    J Bacteriol; 2008 Apr; 190(8):3046-56. PubMed ID: 18281399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction precedes cytidylyl transfer without substrate channeling in distinct active sites of the bifunctional CDP-ribitol synthase from Haemophilus influenzae.
    Zolli M; Kobric DJ; Brown ED
    Biochemistry; 2001 Apr; 40(16):5041-8. PubMed ID: 11305920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression, purification, crystallization and preliminary X-ray analysis of ribitol-5-phosphate cytidylyltransferase from Bacillus subtilis.
    Chen SC; Yang CS; Lin CT; Chan NL; Chang MC; Chen Y
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Oct; 68(Pt 10):1195-7. PubMed ID: 23027746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro system for the synthesis of teichoic acid linked to peptidoglycan.
    Bracha R; Glaser L
    J Bacteriol; 1976 Mar; 125(3):872-9. PubMed ID: 1254557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic analysis of
    Li FKK; Rosell FI; Gale RT; Simorre JP; Brown ED; Strynadka NCJ
    J Biol Chem; 2020 Feb; 295(9):2629-2639. PubMed ID: 31969390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CTP:glycerol 3-phosphate cytidylyltransferase (TarD) from Staphylococcus aureus catalyzes the cytidylyl transfer via an ordered Bi-Bi reaction mechanism with micromolar K(m) values.
    Badurina DS; Zolli-Juran M; Brown ED
    Biochim Biophys Acta; 2003 Mar; 1646(1-2):196-206. PubMed ID: 12637027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and functions of linkage unit intermediates in the biosynthesis of ribitol teichoic acids in Staphylococcus aureus H and Bacillus subtilis W23.
    Yokoyama K; Miyashita T; Araki Y; Ito E
    Eur J Biochem; 1986 Dec; 161(2):479-89. PubMed ID: 3096735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cryo-EM analysis of
    Li FKK; Worrall LJ; Gale RT; Brown ED; Strynadka NCJ
    Sci Adv; 2024 Mar; 10(9):eadj3864. PubMed ID: 38416829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Staphylococcus aureus mutants lacking the LytR-CpsA-Psr family of enzymes release cell wall teichoic acids into the extracellular medium.
    Chan YG; Frankel MB; Dengler V; Schneewind O; Missiakas D
    J Bacteriol; 2013 Oct; 195(20):4650-9. PubMed ID: 23935043
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395.
    Winstel V; Sanchez-Carballo P; Holst O; Xia G; Peschel A
    mBio; 2014 Apr; 5(2):e00869. PubMed ID: 24713320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and enzymatic analysis of TarM glycosyltransferase from Staphylococcus aureus reveals an oligomeric protein specific for the glycosylation of wall teichoic acid.
    Koç C; Gerlach D; Beck S; Peschel A; Xia G; Stehle T
    J Biol Chem; 2015 Apr; 290(15):9874-85. PubMed ID: 25697358
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Jorge AM; Schneider J; Unsleber S; Xia G; Mayer C; Peschel A
    J Biol Chem; 2018 Sep; 293(38):14916-14924. PubMed ID: 30068554
    [No Abstract]   [Full Text] [Related]  

  • 18. In vitro synthesis of the unit that links teichoic acid to peptidoglycan.
    Hancock I; Baddiley J
    J Bacteriol; 1976 Mar; 125(3):880-6. PubMed ID: 815251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of synthesis of wall teichoic acid in phosphate-starved cultures of Bacillus subtilis W23.
    Cheah SC; Hussey H; Baddiley J
    Eur J Biochem; 1981 Sep; 118(3):497-500. PubMed ID: 6271552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus.
    Covas G; Vaz F; Henriques G; Pinho MG; Filipe SR
    Methods Mol Biol; 2016; 1440():201-13. PubMed ID: 27311674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.