These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33819648)

  • 1. Macrophyte biomass productivity for heavy metal adsorption.
    Saralegui AB; Willson V; Caracciolo N; Piol MN; Boeykens SP
    J Environ Manage; 2021 Jul; 289():112398. PubMed ID: 33819648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous heavy metal removal mechanism by dead macrophytes.
    Miretzky P; Saralegui A; Fernández Cirelli A
    Chemosphere; 2006 Jan; 62(2):247-54. PubMed ID: 15990152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of selective adsorption, desorption and reuse of chemically altered biomass produced from aquatic macrophytes for treatment of metal-containing wastewater.
    Ferreira RM; Domingues ALC; Takase I; Stapelfeldt DMA
    Water Sci Technol; 2017 May; 75(9-10):2083-2093. PubMed ID: 28498121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental and prediction modeling study on water lettuce (Pistia stratiotes L.) assisted heavy metals removal from glass industry effluent.
    Singh J; Alhag SK; Al-Shahari EA; Al-Shuraym LA; Alsudays IM; Ahmed MT; Eid EM; Fayssal SA; Kumar P; Malyan SK; Singh O; Kumar V
    Environ Sci Pollut Res Int; 2024 Apr; 31(19):28090-28104. PubMed ID: 38530520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina).
    Miretzky P; Saralegui A; Cirelli AF
    Chemosphere; 2004 Nov; 57(8):997-1005. PubMed ID: 15488590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.
    Verma VK; Tewari S; Rai JP
    Bioresour Technol; 2008 Apr; 99(6):1932-8. PubMed ID: 17513104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pb(II) adsorption by biomass from chemically modified aquatic macrophytes, Salvinia sp. and Pistia stratiotes.
    de Moraes Ferreira R; de Souza MD; Takase I; de Araujo Stapelfeldt DM
    Water Sci Technol; 2016; 73(11):2670-9. PubMed ID: 27232403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the Cu(II) and Pb(II) removal efficiency of aqueous solutions by the dry biomass Aguapé: kinetics of adsorption.
    de Freitas F; Battirola LD; Arruda R; de Andrade RLT
    Environ Monit Assess; 2019 Nov; 191(12):751. PubMed ID: 31732816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation potential of
    Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A
    Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floating aquatic macrophytes for the treatment of aquaculture effluents.
    de Vasconcelos VM; de Morais ERC; Faustino SJB; Hernandez MCR; Gaudêncio HRDSC; de Melo RR; Bessa Junior AP
    Environ Sci Pollut Res Int; 2021 Jan; 28(3):2600-2607. PubMed ID: 33125679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lead phytoremediation potentials of four aquatic macrophytes under hydroponic cultivation.
    Das S; Das A; Mazumder PET; Paul R; Das S
    Int J Phytoremediation; 2021; 23(12):1279-1288. PubMed ID: 33678068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Myriophyllum aquaticum (Vell.) Verdc. to remove heavy metals from contaminated water: Better dead or alive?
    Colzi I; Lastrucci L; Rangoni M; Coppi A; Gonnelli C
    J Environ Manage; 2018 May; 213():320-328. PubMed ID: 29502017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling and efficiency evaluation of the continuous biosorption of Cu(II) and Cr(VI) from water by agricultural waste materials.
    Blagojev N; Vasić V; Kukić D; Šćiban M; Prodanović J; Bera O
    J Environ Manage; 2021 Mar; 281():111876. PubMed ID: 33418386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of phytoremediation technology in decontamination of a fish culture pond fed with coal mine effluent using three aquatic macrophytes.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2019; 21(9):840-848. PubMed ID: 30834773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent.
    Mishra VK; Upadhyay AR; Pandey SK; Tripathi BD
    Environ Monit Assess; 2008 Jun; 141(1-3):49-58. PubMed ID: 17674134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption of heavy metals by dry biomass of metal tolerant bacterial biosorbents: an efficient metal clean-up strategy.
    Rizvi A; Ahmed B; Zaidi A; Khan MS
    Environ Monit Assess; 2020 Dec; 192(12):801. PubMed ID: 33263175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uranium biosorption by Lemna sp. and Pistia stratiotes.
    Vieira LC; de Araujo LG; de Padua Ferreira RV; da Silva EA; Canevesi RLS; Marumo JT
    J Environ Radioact; 2019 Jul; 203():179-186. PubMed ID: 30925263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.