These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 33819648)

  • 21. Treatment of textile effluents with
    Tabinda AB; Arif RA; Yasar A; Baqir M; Rasheed R; Mahmood A; Iqbal A
    Int J Phytoremediation; 2019; 21(10):939-943. PubMed ID: 31016996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent.
    Saraswat S; Rai DJPN
    Int J Phytoremediation; 2018 Jul; 20(9):876-884. PubMed ID: 29873544
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology.
    Lakra KC; Lal B; Banerjee TK
    Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Biosorption of Cd(II), Cu(II), Pb(II) and Zn(II) in aqueous solutions by fruiting bodies of macrofungi (Auricularia polytricha and Tremella fuciformis)].
    Mo Y; Pan R; Huang HW; Cao LX; Zhang RD
    Huan Jing Ke Xue; 2010 Jul; 31(7):1566-74. PubMed ID: 20825027
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoremediation of the coalmine effluent.
    Bharti S; Kumar Banerjee T
    Ecotoxicol Environ Saf; 2012 Jul; 81():36-42. PubMed ID: 22571948
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparing the performance of four macrophytes in bacterial assisted floating treatment wetlands for the removal of trace metals (Fe, Mn, Ni, Pb, and Cr) from polluted river water.
    Shahid MJ; Ali S; Shabir G; Siddique M; Rizwan M; Seleiman MF; Afzal M
    Chemosphere; 2020 Mar; 243():125353. PubMed ID: 31765899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responses of Vallisneria natans and Pistia stratiotes to Cu
    Peng X; Wu Y; Chen L; Ma X
    Ecotoxicol Environ Saf; 2024 Apr; 274():116209. PubMed ID: 38492482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance and efficiency services for the removal of hexavalent chromium from water by common macrophytes.
    Das M; Bramhanand PS; Laxminarayana K
    Int J Phytoremediation; 2021; 23(10):1095-1103. PubMed ID: 33567905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomass decaying and elemental release of aquatic macrophyte detritus in waterways of the Indian River Lagoon basin, South Florida, USA.
    Zhou X; He Z; Ding F; Li L; Stoffella PJ
    Sci Total Environ; 2018 Sep; 635():878-891. PubMed ID: 29710610
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism.
    Chen M; Wang X; Zhang H
    J Environ Manage; 2021 Jun; 288():112388. PubMed ID: 33774561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tolerance and hyperaccumulation of a mixture of heavy metals (Cu, Pb, Hg, and Zn) by four aquatic macrophytes.
    Romero-Hernández JA; Amaya-Chávez A; Balderas-Hernández P; Roa-Morales G; González-Rivas N; Balderas-Plata MÁ
    Int J Phytoremediation; 2017 Mar; 19(3):239-245. PubMed ID: 27712089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Concentrations of some heavy metal and macroelements in sediment, water, macrophyte species, and leech (Hirudo sulukii n. sp.) from the Kara Lake, Adiyaman, Turkey.
    Keser G; Topak Y; Sevgiler Y
    Environ Monit Assess; 2020 Jan; 192(2):75. PubMed ID: 31897783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pistia stratiotes in the phytoremediation and post-treatment of domestic sewage.
    Schwantes D; Gonçalves AC; Schiller ADP; Manfrin J; Campagnolo MA; Somavilla E
    Int J Phytoremediation; 2019; 21(7):714-723. PubMed ID: 30656947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biosorption of uranium from aqueous solutions by Azolla sp. and Limnobium laevigatum.
    de Araujo LG; Vieira LC; Canevesi RLS; da Silva EA; Watanabe T; de Padua Ferreira RV; Marumo JT
    Environ Sci Pollut Res Int; 2022 Jun; 29(30):45221-45229. PubMed ID: 35146605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequential removal of heavy metals ions and organic pollutants using an algal-bacterial consortium.
    Muñoz R; Alvarez MT; Muñoz A; Terrazas E; Guieysse B; Mattiasson B
    Chemosphere; 2006 May; 63(6):903-11. PubMed ID: 16307789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent.
    Kumar V; Singh J; Chopra AK
    Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Process variables that defined the phytofiltration efficiency of invasive macrophytes in aquatic system.
    Bulu YI; Oladoja NA
    Int J Phytoremediation; 2023; 25(13):1774-1792. PubMed ID: 37051867
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aquatic arsenic: phytoremediation using floating macrophytes.
    Rahman MA; Hasegawa H
    Chemosphere; 2011 Apr; 83(5):633-46. PubMed ID: 21435676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Trace element accumulation in Salvinia natans from areas of various land use types.
    Polechońska L; Klink A; Dambiec M
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):30242-30251. PubMed ID: 31422538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.