These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33819661)

  • 1. Computational fluid dynamics-based modeling and optimization of flow rate and radiant exitance for 1,4-dioxane degradation in a vacuum ultraviolet photoreactor.
    Shi G; Nishizawa S; Matsushita T; Kato Y; Kozumi T; Matsui Y; Shirasaki N
    Water Res; 2021 Jun; 197():117086. PubMed ID: 33819661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of hydrodynamics on pollutant degradation and energy efficiency of VUV/UV and H2O2/UV oxidation processes.
    Bagheri M; Mohseni M
    J Environ Manage; 2015 Dec; 164():114-20. PubMed ID: 26363258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of 1,4-dioxane decomposition during VUV treatment by model simulation taking into account effects of coexisting inorganic ions.
    Matsushita T; Sugita W; Ishikawa T; Shi G; Nishizawa S; Matsui Y; Shirasaki N
    Water Res; 2019 Nov; 164():114918. PubMed ID: 31377528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trace Organic Pollutant Removal by VUV/UV/chlorine Process: Feasibility Investigation for Drinking Water Treatment on a Mini-Fluidic VUV/UV Photoreaction System and a Pilot Photoreactor.
    Li M; Hao M; Yang L; Yao H; Bolton JR; Blatchley ER; Qiang Z
    Environ Sci Technol; 2018 Jul; 52(13):7426-7433. PubMed ID: 29792423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A study of enhanced performance of VUV/UV process for the degradation of micropollutants from contaminated water.
    Bagheri M; Mohseni M
    J Hazard Mater; 2015 Aug; 294():1-8. PubMed ID: 25827391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of micropollutants in flow-through VUV/UV reactors: Impact of internal diameter and baffle allocation.
    Jia L; Chen R; Sun Z; Li W; Wang H; Qiang Z
    Chemosphere; 2023 Sep; 335():139112. PubMed ID: 37277001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency.
    Xie P; Yue S; Ding J; Wan Y; Li X; Ma J; Wang Z
    Water Res; 2018 Apr; 133():69-78. PubMed ID: 29367049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel Collimated Beam Setup to Study the Kinetics of VUV-Induced Reactions.
    Duca C; Imoberdorf G; Mohseni M
    Photochem Photobiol; 2014 Jan; 90(1):238-40. PubMed ID: 23952050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of groundwater quality and associated byproduct formation during UV/hydrogen peroxide treatment of 1,4-dioxane.
    Lee CS; Venkatesan AK; Walker HW; Gobler CJ
    Water Res; 2020 Apr; 173():115534. PubMed ID: 32023496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of carbamazepine by vacuum-UV oxidation process: Kinetics modeling and energy efficiency.
    Zhu S; Dong B; Wu Y; Bu L; Zhou S
    J Hazard Mater; 2019 Apr; 368():178-185. PubMed ID: 30677649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic Pollutant Degradation in Water by the Vacuum-Ultraviolet/Ultraviolet/H
    Li M; Li W; Bolton JR; Blatchley ER; Qiang Z
    Environ Sci Technol; 2019 Jan; 53(2):912-918. PubMed ID: 30548062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimethoate degradation by VUV/UV process: Kinetics, mechanism and economic feasibility.
    Wu Z; Yang L; Tang Y; Qiang Z; Li M
    Chemosphere; 2021 Jun; 273():129724. PubMed ID: 33524761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane photoreactor treatment of 1,4-dioxane-containing textile wastewater effluent: Performance, modeling, and fouling control.
    Lee KC; Beak HJ; Choo KH
    Water Res; 2015 Dec; 86():58-65. PubMed ID: 25997749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of organic micropollutants from biologically treated greywater using continuous-flow vacuum-UV/UVC photo-reactor.
    Dubowski Y; Alfiya Y; Gilboa Y; Sabach S; Friedler E
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7578-7587. PubMed ID: 31885065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of diethyl phthalate (DEP) by vacuum ultraviolet process: influencing factors, oxidation products, and toxicity assessment.
    Wu Y; Deng L; Bu L; Zhu S; Shi Z; Zhou S
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5435-5444. PubMed ID: 30607842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of micropolluants in flow-through VUV/UV/H
    Zhan L; Li W; Liu L; Han T; Li M; Qiang Z
    J Environ Sci (China); 2021 Dec; 110():28-37. PubMed ID: 34593192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved vacuum-UV (VUV)-initiated photomineralization of organic compounds in water with a xenon excimer flow-through photoreactor (Xe2* lamp, 172 nm) containing an axially centered ceramic oxygenator.
    Oppenländer T; Walddörfer C; Burgbacher J; Kiermeier M; Lachner K; Weinschrott H
    Chemosphere; 2005 Jul; 60(3):302-9. PubMed ID: 15924948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CFD analysis of a H
    de Medeiros Lima SV; Padoin N; Soares C
    Environ Sci Pollut Res Int; 2021 Aug; 28(30):41224-41232. PubMed ID: 33779903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic pollutant degradation by UV/peroxydisulfate process: Impacts of UV light source and phosphate buffer.
    Lou F; Qiang Z; Zou X; Lv J; Li M
    Chemosphere; 2022 Apr; 292():133387. PubMed ID: 34952016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic modeling of vacuum UV advanced oxidation process in an annular photoreactor.
    Crapulli F; Santoro D; Sasges MR; Ray AK
    Water Res; 2014 Nov; 64():209-225. PubMed ID: 25064486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.