These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33819698)

  • 1. Investigating blunt force trauma to the larynx: The role of inferior-superior vocal fold displacement on phonation.
    Stewart ME; Erath BD
    J Biomech; 2021 May; 121():110377. PubMed ID: 33819698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Vocal Fold Inferior Surface Hypertrophy on Voice Function in Excised Canine Larynges.
    Wang R; Bao H; Xu X; Piotrowski D; Zhang Y; Zhuang P
    J Voice; 2018 Jul; 32(4):396-402. PubMed ID: 28826980
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration.
    Chhetri DK; Neubauer J; Bergeron JL; Sofer E; Peng KA; Jamal N
    Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laryngeal strategies to minimize vocal fold contact pressure and their effect on voice production.
    Zhang Z
    J Acoust Soc Am; 2020 Aug; 148(2):1039. PubMed ID: 32873018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oral vibratory sensations during voice production at different laryngeal and semi-occluded vocal tract configurations.
    Zhang Z
    J Acoust Soc Am; 2022 Jul; 152(1):302. PubMed ID: 35931496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid-structure-acoustic interactions in an ex vivo porcine phonation model.
    Semmler M; Berry DA; Schützenberger A; Döllinger M
    J Acoust Soc Am; 2021 Mar; 149(3):1657. PubMed ID: 33765793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental study of vocal-ventricular fold oscillations in voice production.
    Matsumoto T; Kanaya M; Ishimura K; Tokuda IT
    J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation.
    Titze IR; Talkin DT
    J Acoust Soc Am; 1979 Jul; 66(1):60-74. PubMed ID: 489833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic Voice Analysis and Maximum Phonation Time in Relation to Voice Handicap Index Score and Larynx Disease.
    Karlsen T; Sandvik L; Heimdal JH; Aarstad HJ
    J Voice; 2020 Jan; 34(1):161.e27-161.e35. PubMed ID: 30093166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and analysis of Nonlinear behaviors of vocal fold biomechanics during phonation to assess efficacy of surgery for benign laryngeal Diseases.
    Tseng WH; Chiu HL; Hsiao TY; Yang TL; Shih PJ
    Comput Biol Med; 2024 Feb; 169():107946. PubMed ID: 38176211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of vocal fold physiology from voice acoustics using machine learning.
    Zhang Z
    J Acoust Soc Am; 2020 Mar; 147(3):EL264. PubMed ID: 32237804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of laryngeal size to differences between male and female voice production.
    Zhang Z
    J Acoust Soc Am; 2021 Dec; 150(6):4511. PubMed ID: 34972311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of a simulated system of straw phonation on the complete phonatory range of excised canine larynges.
    Kang J; Scholp A; Tangney J; Jiang JJ
    Eur Arch Otorhinolaryngol; 2019 Feb; 276(2):473-482. PubMed ID: 30631899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Influence of Fiber Orientation of the Conus Elasticus in Vocal Fold Modeling.
    Wang X; Zheng X; Xue Q
    J Biomech Eng; 2023 Sep; 145(9):. PubMed ID: 37216309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voice production in a MRI-based subject-specific vocal fold model with parametrically controlled medial surface shape.
    Wu L; Zhang Z
    J Acoust Soc Am; 2019 Dec; 146(6):4190. PubMed ID: 31893687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal fold dynamics in a synthetic self-oscillating model: Intraglottal aerodynamic pressure and energy.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Aug; 150(2):1332. PubMed ID: 34470335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.