These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33819698)

  • 21. Flow fields and acoustics in a unilateral scarred vocal fold model.
    Murugappan S; Khosla S; Casper K; Oren L; Gutmark E
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerodynamic and acoustic features of vocal effort.
    Rosenthal AL; Lowell SY; Colton RH
    J Voice; 2014 Mar; 28(2):144-53. PubMed ID: 24412040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The shouted voice: A pilot study of laryngeal physiology under extreme aerodynamic pressure.
    Lagier A; Legou T; Galant C; Amy de La Bretèque B; Meynadier Y; Giovanni A
    Logoped Phoniatr Vocol; 2017 Dec; 42(4):141-145. PubMed ID: 27484505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phonation Demonstrates Goal Dependence Under Unique Vocal Intensity and Aerobic Workload Conditions.
    Ziegler A; VanSwearingen J; Jakicic JM; Verdolini Abbott K
    J Speech Lang Hear Res; 2019 Aug; 62(8):2584-2600. PubMed ID: 31291159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D-Printed Synthetic Vocal Fold Models.
    Romero RGT; Colton MB; Thomson SL
    J Voice; 2021 Sep; 35(5):685-694. PubMed ID: 32312610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational simulations of respiratory-laryngeal interactions and their effects on lung volume termination during phonation: Considerations for hyperfunctional voice disorders.
    Desjardins M; Verdolini Abbott K; Zhang Z
    J Acoust Soc Am; 2021 Jun; 149(6):3988. PubMed ID: 34241462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemi-laryngeal Setup for Studying Vocal Fold Vibration in Three Dimensions.
    Herbst CT; Hampala V; Garcia M; Hofer R; Svec JG
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286438
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of cricothyroid and thyroarytenoid interaction on voice control: Muscle activity, vocal fold biomechanics, flow, and acoustics.
    Movahhedi M; Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2021 Jul; 150(1):29. PubMed ID: 34340476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aerodynamically driven phonation of individual vocal folds under general anesthesia in canines.
    Heaton JT; Kobler JB; Ottensmeyer MP; Petrillo RH; Tynan MA; Mehta DD; Hillman RE; Zeitels SM
    Laryngoscope; 2020 Aug; 130(8):1980-1988. PubMed ID: 31603575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of type II thyroplasty on phonatory physiology in an excised canine larynx model.
    Devine EE; Hoffman MR; McCulloch TM; Jiang JJ
    Laryngoscope; 2017 Feb; 127(2):396-404. PubMed ID: 27223665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laryngeal physiology and voice acoustics are maintained after minimally invasive parathyroidectomy.
    Leder SB; Donovan P; Acton LM; Warner HL; Carling T; Alian AA; Udelsman R
    Ann Surg; 2013 May; 257(5):968-70. PubMed ID: 23470579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation.
    Doellinger M; Berry DA; Berke GS
    Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vertical hyoid bone displacement and fundamental frequency of phonation.
    Vilkman E; Karma P
    Acta Otolaryngol; 1989; 108(1-2):142-51. PubMed ID: 2763833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of male singers laryngeal vertical displacement during the first passaggio and its implications on the vocal folds vibratory pattern.
    Andrade PA
    J Voice; 2012 Sep; 26(5):665.e19-24. PubMed ID: 22578439
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Collision Pressure and Dissipated Power Dose in a Self-Oscillating Silicone Vocal Fold Model With a Posterior Glottal Opening.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Speech Lang Hear Res; 2022 Aug; 65(8):2829-2845. PubMed ID: 35914018
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A case report in changes in phonatory physiology following voice therapy: application of high-speed imaging.
    Patel RR; Pickering J; Stemple J; Donohue KD
    J Voice; 2012 Nov; 26(6):734-41. PubMed ID: 22717492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [The evaluation of voice and aerodynamic activity of larynx in patients with vocal cords atrophy].
    Kosztyła-Hojna B
    Pol Merkur Lekarski; 2005 Feb; 18(104):151-5. PubMed ID: 17877119
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of nodule size and stiffness on phonation threshold and collision pressures in a synthetic hemilaryngeal vocal fold model.
    Motie-Shirazi M; Zañartu M; Peterson SD; Mehta DD; Hillman RE; Erath BD
    J Acoust Soc Am; 2023 Jan; 153(1):654. PubMed ID: 36732229
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of asymmetric vocal fold stiffness on traveling wave velocity in the canine larynx.
    Sloan SH; Berke GS; Gerratt BR
    Otolaryngol Head Neck Surg; 1992 Oct; 107(4):516-26. PubMed ID: 1437183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.