These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
592 related articles for article (PubMed ID: 33819703)
1. Machine Learning-Based Multiparametric Magnetic Resonance Imaging Radiomics for Prediction of H3K27M Mutation in Midline Gliomas. Kandemirli SG; Kocak B; Naganawa S; Ozturk K; Yip SSF; Chopra S; Rivetti L; Aldine AS; Jones K; Cayci Z; Moritani T; Sato TS World Neurosurg; 2021 Jul; 151():e78-e85. PubMed ID: 33819703 [TBL] [Abstract][Full Text] [Related]
2. MRI Radiomic Features to Predict IDH1 Mutation Status in Gliomas: A Machine Learning Approach using Gradient Tree Boosting. Sakai Y; Yang C; Kihira S; Tsankova N; Khan F; Hormigo A; Lai A; Cloughesy T; Nael K Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33121211 [TBL] [Abstract][Full Text] [Related]
3. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y; Zhang X; Rui W; Pang H; Qiu T; Wang J; Xie Q; Jin T; Zhang H; Chen H; Zhang Y; Lu H; Yao Z; Zhang J; Feng X J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [TBL] [Abstract][Full Text] [Related]
4. MRI-based radiomics signature and clinical factor for predicting H3K27M mutation in pediatric high-grade gliomas located in the midline of the brain. Wu C; Zheng H; Li J; Zhang Y; Duan S; Li Y; Wang D Eur Radiol; 2022 Mar; 32(3):1813-1822. PubMed ID: 34655310 [TBL] [Abstract][Full Text] [Related]
5. A machine learning-based prediction model of H3K27M mutations in brainstem gliomas using conventional MRI and clinical features. Pan CC; Liu J; Tang J; Chen X; Chen F; Wu YL; Geng YB; Xu C; Zhang X; Wu Z; Gao PY; Zhang JT; Yan H; Liao H; Zhang LW Radiother Oncol; 2019 Jan; 130():172-179. PubMed ID: 30097251 [TBL] [Abstract][Full Text] [Related]
6. Automated machine learning based on radiomics features predicts H3 K27M mutation in midline gliomas of the brain. Su X; Chen N; Sun H; Liu Y; Yang X; Wang W; Zhang S; Tan Q; Su J; Gong Q; Yue Q Neuro Oncol; 2020 Mar; 22(3):393-401. PubMed ID: 31563963 [TBL] [Abstract][Full Text] [Related]
7. Diffusion- and perfusion-weighted MRI radiomics model may predict isocitrate dehydrogenase (IDH) mutation and tumor aggressiveness in diffuse lower grade glioma. Kim M; Jung SY; Park JE; Jo Y; Park SY; Nam SJ; Kim JH; Kim HS Eur Radiol; 2020 Apr; 30(4):2142-2151. PubMed ID: 31828414 [TBL] [Abstract][Full Text] [Related]
8. Prediction of H3K27M mutation status of diffuse midline gliomas using MRI features. Chauhan RS; Kulanthaivelu K; Kathrani N; Kotwal A; Bhat MD; Saini J; Prasad C; Chakrabarti D; Santosh V; Uppar AM; Srinivas D J Neuroimaging; 2021 Nov; 31(6):1201-1210. PubMed ID: 34189806 [TBL] [Abstract][Full Text] [Related]
9. Qualitative and Quantitative MRI Analysis in IDH1 Genotype Prediction of Lower-Grade Gliomas: A Machine Learning Approach. Cao M; Suo S; Zhang X; Wang X; Xu J; Yang W; Zhou Y Biomed Res Int; 2021; 2021():1235314. PubMed ID: 33553421 [TBL] [Abstract][Full Text] [Related]
10. MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Li Y; Qian Z; Xu K; Wang K; Fan X; Li S; Jiang T; Liu X; Wang Y Neuroimage Clin; 2018; 17():306-311. PubMed ID: 29527478 [TBL] [Abstract][Full Text] [Related]
11. Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. Li Y; Liu X; Qian Z; Sun Z; Xu K; Wang K; Fan X; Zhang Z; Li S; Wang Y; Jiang T Eur Radiol; 2018 Jul; 28(7):2960-2968. PubMed ID: 29404769 [TBL] [Abstract][Full Text] [Related]
12. Machine learning and radiomic phenotyping of lower grade gliomas: improving survival prediction. Choi YS; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Jain R; Lee SK Eur Radiol; 2020 Jul; 30(7):3834-3842. PubMed ID: 32162004 [TBL] [Abstract][Full Text] [Related]
13. Radiomics MRI Phenotyping with Machine Learning to Predict the Grade of Lower-Grade Gliomas: A Study Focused on Nonenhancing Tumors. Park YW; Choi YS; Ahn SS; Chang JH; Kim SH; Lee SK Korean J Radiol; 2019 Sep; 20(9):1381-1389. PubMed ID: 31464116 [TBL] [Abstract][Full Text] [Related]
14. Prediction of H3K27M-mutant brainstem glioma by amide proton transfer-weighted imaging and its derived radiomics. Zhuo Z; Qu L; Zhang P; Duan Y; Cheng D; Xu X; Sun T; Ding J; Xie C; Liu X; Haller S; Barkhof F; Zhang L; Liu Y Eur J Nucl Med Mol Imaging; 2021 Dec; 48(13):4426-4436. PubMed ID: 34131804 [TBL] [Abstract][Full Text] [Related]
15. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Jiang C; Kong Z; Zhang Y; Liu S; Liu Z; Chen W; Liu P; Liu D; Wang Y; Lyu Y; Zhao D; Wang Y; You H; Feng F; Ma W Neuroradiology; 2020 Jul; 62(7):803-813. PubMed ID: 32239241 [TBL] [Abstract][Full Text] [Related]
16. Noninvasive assessment of H3 K27M mutational status in diffuse midline gliomas by using apparent diffusion coefficient measurements. Chen H; Hu W; He H; Yang Y; Wen G; Lv X Eur J Radiol; 2019 May; 114():152-159. PubMed ID: 31005167 [TBL] [Abstract][Full Text] [Related]
17. Improving Noninvasive Classification of Molecular Subtypes of Adult Gliomas With Diffusion-Weighted MR Imaging: An Externally Validated Machine Learning Algorithm. Guo Y; Ma Z; Pei D; Duan W; Guo Y; Liu Z; Guan F; Wang Z; Xing A; Guo Z; Luo L; Wang W; Yu B; Zhou J; Ji Y; Yan D; Cheng J; Liu X; Yan J; Zhang Z J Magn Reson Imaging; 2023 Oct; 58(4):1234-1242. PubMed ID: 36727433 [TBL] [Abstract][Full Text] [Related]
18. T2-FLAIR mismatch sign and machine learning-based multiparametric MRI radiomics in predicting IDH mutant 1p/19q non-co-deleted diffuse lower-grade gliomas. Tang WT; Su CQ; Lin J; Xia ZW; Lu SS; Hong XN Clin Radiol; 2024 May; 79(5):e750-e758. PubMed ID: 38360515 [TBL] [Abstract][Full Text] [Related]
19. Advanced MR imaging and Piccardo A; Tortora D; Mascelli S; Severino M; Piatelli G; Consales A; Pescetto M; Biassoni V; Schiavello E; Massollo M; Verrico A; Milanaccio C; Garrè ML; Rossi A; Morana G Eur J Nucl Med Mol Imaging; 2019 Jul; 46(8):1685-1694. PubMed ID: 31030232 [TBL] [Abstract][Full Text] [Related]
20. Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas. Jiang C; Kong Z; Liu S; Feng S; Zhang Y; Zhu R; Chen W; Wang Y; Lyu Y; You H; Zhao D; Wang R; Wang Y; Ma W; Feng F Eur J Radiol; 2019 Dec; 121():108714. PubMed ID: 31704598 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]