These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33820052)

  • 1. Feedback-controlled microbubble generator producing one million monodisperse bubbles per second.
    van Elburg B; Collado-Lara G; Bruggert GW; Segers T; Versluis M; Lajoinie G
    Rev Sci Instrum; 2021 Mar; 92(3):035110. PubMed ID: 33820052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stability of Monodisperse Phospholipid-Coated Microbubbles Formed by Flow-Focusing at High Production Rates.
    Segers T; de Rond L; de Jong N; Borden M; Versluis M
    Langmuir; 2016 Apr; 32(16):3937-44. PubMed ID: 27006083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved coalescence stability of monodisperse phospholipid-coated microbubbles formed by flow-focusing at elevated temperatures.
    Segers T; Lassus A; Bussat P; Gaud E; Frinking P
    Lab Chip; 2018 Dec; 19(1):158-167. PubMed ID: 30511070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Ultrasound and Capillary-Embedded T-Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation.
    Khan AH; Jiang X; Kaushik A; Nair HS; Edirisinghe M; Mercado-Shekhar KP; Shekhar H; Dalvi SV
    Langmuir; 2022 Aug; 38(33):10288-10304. PubMed ID: 35943351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size reduction of cosolvent-infused microbubbles to form acoustically responsive monodisperse perfluorocarbon nanodroplets.
    Seo M; Williams R; Matsuura N
    Lab Chip; 2015 Sep; 15(17):3581-90. PubMed ID: 26220563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bubble sorting in pinched microchannels for ultrasound contrast agent enrichment.
    Kok MP; Segers T; Versluis M
    Lab Chip; 2015; 15(18):3716-22. PubMed ID: 26223966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-Dried Microfluidic Monodisperse Microbubbles as a New Generation of Ultrasound Contrast Agents.
    Soysal U; Azevedo PN; Bureau F; Aubry A; Carvalho MS; Pessoa ACSN; Torre LG; Couture O; Tourin A; Fink M; Tabeling P
    Ultrasound Med Biol; 2022 Aug; 48(8):1484-1495. PubMed ID: 35568594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device.
    Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E
    J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phospholipid-coated gas bubble engineering: key parameters for size and stability control, as determined by an acoustical method.
    Rossi S; Waton G; Krafft MP
    Langmuir; 2010 Feb; 26(3):1649-55. PubMed ID: 20099916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbubble generation in a co-flow device operated in a new regime.
    Castro-Hernández E; van Hoeve W; Lohse D; Gordillo JM
    Lab Chip; 2011 Jun; 11(12):2023-9. PubMed ID: 21431188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal Equations for the Coalescence Probability and Long-Term Size Stability of Phospholipid-Coated Monodisperse Microbubbles Formed by Flow Focusing.
    Segers T; Lohse D; Versluis M; Frinking P
    Langmuir; 2017 Oct; 33(39):10329-10339. PubMed ID: 28872315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-chip microfluidic generation of monodisperse bubbles for liquid interfacial tension measurement.
    Wang C; Cao J; Zhou Y; Xia XH
    Talanta; 2018 Jan; 176():646-651. PubMed ID: 28917802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of perfluorocarbon gases on the size and stability characteristics of phospholipid-coated microbubbles: osmotic effect versus interfacial film stabilization.
    Szíjjártó C; Rossi S; Waton G; Krafft MP
    Langmuir; 2012 Jan; 28(2):1182-9. PubMed ID: 22176688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid Flooded Flow-Focusing Microfluidic Device for in situ Generation of Monodisperse Microbubbles.
    Dhanaliwala AH; Chen JL; Wang S; Hossack JA
    Microfluid Nanofluidics; 2013 Mar; 14(3-4):457-467. PubMed ID: 23439786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding 3D geometry for enhanced on-chip microbubble production and single step formation of liposome modified microbubbles.
    Peyman SA; Abou-Saleh RH; McLaughlan JR; Ingram N; Johnson BR; Critchley K; Freear S; Evans JA; Markham AF; Coletta PL; Evans SD
    Lab Chip; 2012 Nov; 12(21):4544-52. PubMed ID: 22968592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic bubble sorting for ultrasound contrast agent enrichment.
    Segers T; Versluis M
    Lab Chip; 2014 May; 14(10):1705-14. PubMed ID: 24651248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Post-Formation Shrinkage and Stabilization of Microfluidic Bubbles in Lipid Solution.
    Shih R; Lee AP
    Langmuir; 2016 Mar; 32(8):1939-46. PubMed ID: 26820229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the size distribution of lipid-coated bubbles via fluidity regulation.
    Wang CH; Yeh CK
    Ultrasound Med Biol; 2013 May; 39(5):882-92. PubMed ID: 23453628
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic nanobubbles: observations of a sudden contraction of microbubbles into nanobubbles.
    Paknahad AA; Zalloum IO; Karshafian R; Kolios MC; Tsai SSH
    Soft Matter; 2023 Jul; 19(27):5142-5149. PubMed ID: 37386867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.